The widespread use of polyvinyl chloride (PVC) and its entry into humans and livestock is of serious concern. In our study, we investigated the impact of PVC treatments on physiological, pathological, hormonal, and microbiota changes in female rabbits. Trend-like alterations in weight were observed in the spleen, liver, and kidney in both low (P1) and high dose (P2) PVC treatment groups.
View Article and Find Full Text PDFMany scientific breakthroughs have depended on animal research, yet the ethical concerns surrounding the use of animals in experimentation have long prompted discussions about humane treatment and responsible scientific practice. First articulated by Russell and Burch, the 3Rs Principles of Replacement, Reduction, and Refinement have gained widespread recognition as basic guidelines for animal research. Over time, the 3Rs have transcended the research community, influencing policy decisions, animal welfare advocacy and public perception of animal experimentation.
View Article and Find Full Text PDFThe most current in vitro genetic methods, including gene preservation, gene editing and developmental modelling, require a significant number of healthy cells. In poultry species, primordial germ cells (PGCs) are great candidates for all the above-mentioned purposes, given their easy culturing and well-established freezing method for chicken. However, the constant monitoring of cultures can be financially challenging and consumes large amounts of solutions and accessories.
View Article and Find Full Text PDFThere is an ongoing process in which mitochondrial sequences are being integrated into the nuclear genome. The importance of these sequences has already been revealed in cancer biology, forensic, phylogenetic studies and in the evolution of the eukaryotic genetic information. Human and numerous model organisms' genomes were described from those sequences point of view.
View Article and Find Full Text PDFJ Exp Zool A Ecol Integr Physiol
March 2024
Environmentally sensitive sex determination may help organisms adapt to environmental change but also makes them vulnerable to anthropogenic stressors, with diverse consequences for population dynamics and evolution. The mechanisms translating environmental stimuli to sex are controversial: although several fish experiments supported the mediator role of glucocorticoid hormones, results on some reptiles challenged it. We tested this hypothesis in amphibians by investigating the effect of corticosterone on sex determination in agile frogs (Rana dalmatina).
View Article and Find Full Text PDFNumtogenesis is observable in the mammalian genomes resulting in the integration of mitochondrial segments into the nuclear genomes (numts). To identify numts in rabbit, we aligned mitochondrial and nuclear genomes. Alignment significance threshold was calculated and individual characteristics of numts were analysed.
View Article and Find Full Text PDFExtreme temperatures during heat waves can induce mass-mortality events, but can also exert sublethal negative effects by compromising life-history traits and derailing sexual development. Ectothermic animals may, however, also benefit from increased temperatures via enhanced physiological performance and the suppression of cold-adapted pathogens. Therefore, it is crucial to address how the intensity and timing of naturally occurring or human-induced heat waves affect life-history traits and sexual development in amphibians, to predict future effects of climate change and to minimize risks arising from the application of elevated temperature in disease mitigation.
View Article and Find Full Text PDFAnthropogenic environmental change poses a special threat to species in which genetic sex determination can be overwritten by the thermal and chemical environment. Endocrine disrupting chemicals as well as extreme temperatures can induce sex reversal in such species, with potentially wide-ranging consequences for fitness, demography, population viability and evolution. Despite accumulating evidence suggesting that chemical and thermal effects may interact in ecological contexts, little is known about their combined effects on sex reversal.
View Article and Find Full Text PDFPopulations of ectothermic vertebrates are vulnerable to environmental pollution and climate change because certain chemicals and extreme temperatures can cause sex reversal during early ontogeny (i.e. genetically female individuals develop male phenotype or vice versa), which may distort population sex ratios.
View Article and Find Full Text PDFSanitization of nucleotide pools is essential for genome maintenance. Deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) is a key enzyme in this pathway since it catalyzes the cleavage of 2'-deoxyuridine 5'-triphosphate (dUTP) into 2'-deoxyuridine 5'-monophosphate (dUMP) and inorganic pyrophosphate. Through its action dUTPase efficiently prevents uracil misincorporation into DNA and at the same time provides dUMP, the substrate for de novo thymidylate biosynthesis.
View Article and Find Full Text PDFFocal segmental glomerulosclerosis (FSGS) is a potential cause of nephrotic syndrome both in humans and pet mammals. Glomerulopathy was reported earlier in green fluorescent protein (GFP) transgenic (TG) mice, but glomerulosclerosis has not been examined in GFP TG rabbits so far. In the present study, the potential manifestation of FSGS was investigated in both Venus TG rabbits generated by Sleeping Beauty (SB) transposition and age-matched control New Zealand White (NZW) rabbits.
View Article and Find Full Text PDFTransgenic rabbits carrying mammary gland specific gene constructs are extensively used for excreting recombinant proteins into the milk. Here, we report refined phenotyping of previously generated Venus transposon-carrying transgenic rabbits with particular emphasis on the secretion of the reporter protein by exocrine glands, such as mammary, salivary, tear and seminal glands. The Sleeping Beauty (SB) transposon transgenic construct contains the Venus fluorophore cDNA, but without a signal peptide for the secretory pathway, driven by the ubiquitous CAGGS (CAG) promoter.
View Article and Find Full Text PDFLentiviral gene constructs can be efficiently and specifically delivered to trophoblast cell lineages in rodents. In vivo genetic manipulation of trophoblast cell lines enables functional and developmental studies in the placenta. In this report we show that genetic modification can be produced in the extraembryonic tissues of rabbits by lentiviral gene constructs.
View Article and Find Full Text PDFThe efficacies of guide RNAs (gRNAs), the short RNA molecules that bind to and determine the sequence specificity of the Streptococcus pyogenes Cas9 nuclease, to mediate DNA cleavage vary dramatically. Thus, the selection of appropriate target sites, and hence spacer sequence, is critical for most applications. Here, we describe a simple, unparalleled method for experimentally pre-testing the efficiencies of various gRNAs targeting a gene.
View Article and Find Full Text PDFNuclear DNA sequences of mitochondrial origin (numts) are derived by insertion of mitochondrial DNA (mtDNA), into the nuclear genome. In this study, we provide, for the first time, a genome picture of numts inserted in the pig nuclear genome. The Sus scrofa reference nuclear genome (Sscrofa10.
View Article and Find Full Text PDFThe Sleeping Beauty transposon system was established as a robust and efficient method for germline transgenesis in different mammalian species. The generation of transgenic mice, rats, rabbits and swine carrying an identical Venus reporter construct delivered by transposon-mediated gene transfer enables comparative studies of gene expression in these lines of mammalian models. Whereas comparable expression patterns of the Venus reporter were found in somatic tissues, preliminary studies suggested that a striking difference in reporter expression may exist in mature spermatozoa of these species.
View Article and Find Full Text PDFThe laboratory rabbit (Oryctolagus cuniculus) is widely used as a model for a variety of inherited and acquired human diseases. In addition, the rabbit is the smallest livestock animal that is used to transgenically produce pharmaceutical proteins in its milk. Here we describe a protocol for high-efficiency germline transgenesis and sustained transgene expression in rabbits by using the Sleeping Beauty (SB) transposon system.
View Article and Find Full Text PDFWe describe a protocol for high-efficiency germline transgenesis and sustained transgene expression in two important biomedical models, the mouse and the rat, by using the Sleeping Beauty transposon system. The procedure is based on co-injection of synthetic mRNA encoding the SB100X hyperactive transposase, together with circular plasmid DNA carrying a transgene construct flanked by binding sites for the transposase, into the pronuclei of fertilized oocytes. Upon translation of the transposase mRNA, enzyme-mediated excision of the transgene cassettes from the injected plasmids followed by permanent genomic insertion produces stable transgenic animals.
View Article and Find Full Text PDFEfficient production of transgenic animals using low-titer lentiviral constructs remains challenging. Here we demonstrate that microinjection of simian immundeficiency virus-derived lentiviral constructs can produce transgenic mice and rats with high efficiency even when using low-titer virus preparations.
View Article and Find Full Text PDFThe neonatal Fc receptor (FcRn) regulates IgG and albumin homeostasis, mediates maternal IgG transport, takes an active role in phagocytosis, and delivers antigen for presentation. We have previously shown that overexpression of FcRn in transgenic mice significantly improves the humoral immune response. Because rabbits are an important source of polyclonal and monoclonal antibodies, adaptation of our FcRn overexpression technology in this species would bring significant advantages.
View Article and Find Full Text PDF