Information propagation in the one-dimensional infinite temperature Hubbard model with a dissipative particle sink at the end of a semi-infinite chain is studied. In the strongly interacting limit, the two-site mutual information and the operator entanglement entropy exhibit a rich structure with two propagating information fronts and superimposed interference fringes. A classical reversible cellular automaton model quantitatively captures the transport and the slow, classical part of the correlations but fails to describe the rapidly propagating information jet.
View Article and Find Full Text PDFWe introduce novel algorithmic solutions for hybrid CPU-multiGPU tensor network state algorithms utilizing non-Abelian symmetries building on AI-motivated state-of-the-art hardware and software technologies. The presented numerical simulations on the FeMo cofactor, which plays a crucial role in converting atmospheric nitrogen to ammonia, are far beyond the scope of traditional approaches. Our large-scale (2) spin adapted density matrix renormalization group calculations up to bond dimension = 2 on complete active space (CAS) size of 18 electrons in 18 orbitals [CAS(18, 18)] demonstrate that the current limit of exact solution, i.
View Article and Find Full Text PDFWe report cutting edge performance results on a single node hybrid CPU-multi-GPU implementation of the spin adapted Density Matrix Renormalization Group (DMRG) method on current state-of-the-art NVIDIA DGX-H100 architectures. We evaluate the performance of the DMRG electronic structure calculations for the active compounds of the FeMoco, the primary cofactor of nitrogenase, and cytochrome P450 (CYP) enzymes with complete active space (CAS) sizes of up to 113 electrons in 76 orbitals [CAS(113, 76)] and 63 electrons in 58 orbitals [CAS(63, 58)], respectively. We achieve 246 teraFLOPS of sustained performance, an improvement of more than 2.
View Article and Find Full Text PDFWe theoretically derive and validate with large scale simulations a remarkably accurate power law scaling of errors for the restricted active space density matrix renormalization group (DMRG-RAS) method [J. Phys. Chem.
View Article and Find Full Text PDFIn the past decade, the quantum chemical version of the density matrix renormalization group method has established itself as the method of choice for strongly correlated molecular systems. However, despite its favorable scaling, in practice, it is not suitable for computations of dynamic correlation. Several approaches to include that in post-DMRG methods exist; in our group, we focused on the tailored coupled cluster (TCC) approach.
View Article and Find Full Text PDFWe present an alternative, memory-efficient, Schmidt decomposition-based description of the inherently bipartite restricted active space (RAS) scheme, which can be implemented effortlessly within the density matrix renormalization group (DMRG) method via the dynamically extended active space procedure. Benchmark calculations are compared against state-of-the-art results of C and Cr, which are notorious for their multireference character. Our results for ground and excited states together with spectroscopic constants demonstrate that the proposed novel approach, dubbed as DMRG-RAS, which is variational and free of uncontrolled method errors, has the potential to outperfom conventional methods for strongly correlated molecules.
View Article and Find Full Text PDFTailored coupled cluster theory represents a computationally inexpensive way to describe static and dynamical electron correlation effects. In this work, we scrutinize the performance of various coupled cluster methods tailored by electronic wave functions of polynomial cost. Specifically, we focus on frozen-pair coupled cluster (fpCC) methods, which are tailored by pair-coupled cluster doubles (pCCD), and coupled cluster theory tailored by matrix product state wave functions optimized by the density matrix renormalization group (DMRG) algorithm.
View Article and Find Full Text PDFWave functions based on electron-pair states provide inexpensive and reliable models to describe quantum many-body problems containing strongly correlated electrons, given that broken-pair states have been appropriately accounted for by, for instance, a posteriori corrections. In this article, we analyze the performance of electron-pair methods in predicting orbital-based correlation spectra. We focus on the (orbital-optimized) pair-coupled cluster doubles (pCCD) ansatz with a linearized coupled-cluster (LCC) correction.
View Article and Find Full Text PDFJ Chem Theory Comput
February 2021
In this paper, we analyze the numerical aspects of the inherent multireference density matrix renormalization group (DMRG) calculations on top of the periodic Kohn-Sham density functional theory using the complete active space approach. The potential of the framework is illustrated by studying hexagonal boron nitride nanoflakes embedding a charged single boron vacancy point defect by revealing a vertical energy spectrum with a prominent multireference character. We investigate the consistency of the DMRG energy spectrum from the perspective of sample size, basis size, and active space selection protocol.
View Article and Find Full Text PDFWe present, to the best of our knowledge, the first attempt to exploit the super-computer platform for quantum chemical density matrix renormalization group (QC-DMRG) calculations. We have developed the parallel scheme based on the in-house MPI global memory library, which combines operator and symmetry sector parallelisms, and tested its performance on three different molecules, all typical candidates for QC-DMRG calculations. In case of the largest calculation, which is the nitrogenase FeMo cofactor cluster with the active space comprising 113 electrons in 76 orbitals and bond dimension equal to 6000, our parallel approach scales up to approximately 2000 CPU cores.
View Article and Find Full Text PDFFor most chiralities, semiconducting nanotubes display topologically protected end states of multiple degeneracies. We demonstrate using density matrix renormalization group based quantum chemistry tools that the presence of Coulomb interactions induces the formation of robust end spins. These are the close analogs of ferromagnetic edge states emerging in graphene nanoribbons.
View Article and Find Full Text PDFFe(ii)-porphyrins play an important role in many reactions relevant to material science and biological processes, due to their closely lying spin states. Although the prevalent opinion is that these systems posses the triplet ground state, the recent experiment on Fe(ii)-phthalocyanine under conditions matching those of an isolated molecule points toward the quintet ground state. We present a thorough DFT and DMRG-based tailored CC study of Fe(ii)-porphyrin model, in which we address all previously discussed correlation effects.
View Article and Find Full Text PDFThere are three essential problems in computational relativistic chemistry: Electrons moving at relativistic speeds, close lying states, and dynamical correlation. Currently available quantum-chemical methods are capable of solving systems with one or two of these issues. However, there is a significant class of molecules in which all the three effects are present.
View Article and Find Full Text PDFWe present a new implementation of density matrix renormalization group based tailored coupled clusters method (TCCSD), which employs the domain-based local pair natural orbital approach (DLPNO). Compared to the previous local pair natural orbital (LPNO) version of the method, the new implementation is more accurate, offers more favorable scaling, and provides more consistent behavior across the variety of systems. On top of the singles and doubles, we include the perturbative triples correction (T), which is able to retrieve even more dynamic correlation.
View Article and Find Full Text PDFWe introduce a new implementation of the coupled cluster method with single and double excitations tailored by the matrix product state wave functions (DMRG-TCCSD), which employs the local pair natural orbital (LPNO) approach. By exploiting locality in the coupled cluster stage of the calculation, we were able to remove some of the limitations that hindered the application of the canonical version of the method to larger systems and/or with larger basis sets. We assessed the accuracy of the approximation using two systems: tetramethyleneethane (TME) and oxo-Mn(Salen).
View Article and Find Full Text PDFRecently, the correlation theory of the chemical bond was developed, which applies concepts of quantum information theory for the characterization of chemical bonds, based on the multiorbital correlations within the molecule. Here, for the first time, we extend the use of this mathematical toolbox for the description of electron-deficient bonds. We start by verifying the theory on the textbook example of a molecule with three-center two-electron bonds, namely, diborane(6).
View Article and Find Full Text PDFIn this article, we investigate the numerical and theoretical aspects of the coupled-cluster method tailored by matrix-product states. We investigate formal properties of the used method, such as energy size consistency and the equivalence of linked and unlinked formulation. The existing mathematical analysis is here elaborated in a quantum chemical framework.
View Article and Find Full Text PDFUnderstanding the binding mechanism in neptunyl clusters formed due to cation-cation interactions is of crucial importance in nuclear waste reprocessing and related areas of research. Since experimental manipulations with such species are often rather limited, we have to rely on quantum-chemical predictions of their electronic structures and spectroscopic parameters. In this work, we present a state-of-the-art quantum chemical study of the T-shaped and diamond-shaped neptunyl(v) and neptunyl(vi) dimers.
View Article and Find Full Text PDFIron(II) phthalocyanine (FePc) is an important member of the phthalocyanines family with potential applications in the fields of electrocatalysis, magnetic switching, electrochemical sensing, and phototheranostics. Despite the importance of electronic properties of FePc in these applications, a reliable determination of its ground-state is still challenging. Here we present combined state of the art computational methods and experimental approaches, that is, Mössbauer spectroscopy and Superconducting Quantum Interference Device (SQUID) magnetic measurements to identify the ground state of FePc.
View Article and Find Full Text PDFWe have performed a full configuration interaction (FCI) quality benchmark calculation for the tetramethyleneethane molecule in the cc-pVTZ basis set employing a subset of complete active space second order perturbation theory, CASPT2(6,6), natural orbitals for the FCI quantum Monte Carlo calculation. The results are in an excellent agreement with the previous large scale diffusion Monte Carlo calculations by Pozun et al. and available experimental results.
View Article and Find Full Text PDFWe present a new variational tree tensor network state (TTNS) ansatz, the three-legged tree tensor network state (T3NS). Physical tensors are interspersed with branching tensors. Physical tensors have one physical index and at most two virtual indices, as in the matrix product state (MPS) ansatz of the density matrix renormalization group (DMRG).
View Article and Find Full Text PDFThe quantum mechanical description of the chemical bond is generally given in terms of delocalized bonding orbitals, or, alternatively, in terms of correlations of occupations of localised orbitals. However, in the latter case, multiorbital correlations were treated only in terms of two-orbital correlations, although the structure of multiorbital correlations is far richer; and, in the case of bonds established by more than two electrons, multiorbital correlations represent a more natural point of view. Here, for the first time, we introduce the true multiorbital correlation theory, consisting of a framework for handling the structure of multiorbital correlations, a toolbox of true multiorbital correlation measures, and the formulation of the multiorbital correlation clustering, together with an algorithm for obtaining that.
View Article and Find Full Text PDFActinide-containing complexes present formidable challenges for electronic structure methods due to the large number of degenerate or quasi-degenerate electronic states arising from partially occupied 5f and 6d shells. Conventional multi-reference methods can treat active spaces that are often at the upper limit of what is required for a proper treatment of species with complex electronic structures, leaving no room for verifying their suitability. In this work we address the issue of properly defining the active spaces in such calculations, and introduce a protocol to determine optimal active spaces based on the use of the Density Matrix Renormalization Group algorithm and concepts of quantum information theory.
View Article and Find Full Text PDF