Publications by authors named "Orringer D"

The adoption of large language models (LLMs) in healthcare demands a careful analysis of their potential to spread false medical knowledge. Because LLMs ingest massive volumes of data from the open Internet during training, they are potentially exposed to unverified medical knowledge that may include deliberately planted misinformation. Here, we perform a threat assessment that simulates a data-poisoning attack against The Pile, a popular dataset used for LLM development.

View Article and Find Full Text PDF

Unlabelled: QUESTIONS AND RECOMMENDATIONS FROM THE PRIOR VERSION OF THESE GUIDELINES WITHOUT CHANGE: TARGET POPULATION: Adult patients (age ≥ 18 years) who have suspected low-grade diffuse glioma.

Question: What are the optimal neuropathological techniques to diagnose low-grade diffuse glioma in the adult?

Recommendation: Level I Histopathological analysis of a representative surgical sample of the lesion should be used to provide the diagnosis of low-grade diffuse glioma. Level III Both frozen section and cytopathologic/smear evaluation should be used to aid the intra-operative assessment of low-grade diffuse glioma diagnosis.

View Article and Find Full Text PDF

Introduction: Balancing surgical margins and functional outcomes is crucial during radical prostatectomy for prostate cancer. Stimulated Raman Histology (SRH) is a novel, real-time imaging technique that provides histologic images of fresh, unprocessed, and unstained tissue within minutes, which can be interpreted by either humans or artificial intelligence.

Methods: Twenty-two participants underwent robotic-assisted laparoscopic radical prostatectomy (RALP) with intraoperative SRH surgical bed assessment.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate intraoperative diagnosis of primary CNS lymphoma (PCNSL) is vital for surgical decisions but is challenging due to similar features with other CNS diseases; a new method combines stimulated Raman histology (SRH) with deep learning to improve this process.
  • The RapidLymphoma system uses a portable Raman microscope to create virtual images of tissue samples in under three minutes and employs a deep learning model trained on 54,000 images, allowing it to detect PCNSL and differentiate it from other conditions effectively.
  • In testing, RapidLymphoma achieved a high accuracy rate of 97.81%, performing better than traditional methods, and demonstrated its capability to identify specific histological features crucial for diagnosis, providing quick feedback
View Article and Find Full Text PDF

A critical challenge in glioma treatment is detecting tumour infiltration during surgery to achieve safe maximal resection. Unfortunately, safely resectable residual tumour is found in the majority of patients with glioma after surgery, causing early recurrence and decreased survival. Here we present FastGlioma, a visual foundation model for fast (<10 s) and accurate detection of glioma infiltration in fresh, unprocessed surgical tissue.

View Article and Find Full Text PDF

The detection and tracking of metastatic cancer over the lifetime of a patient remains a major challenge in clinical trials and real-world care. Advances in deep learning combined with massive datasets may enable the development of tools that can address this challenge. We present NYUMets-Brain, the world's largest, longitudinal, real-world dataset of cancer consisting of the imaging, clinical follow-up, and medical management of 1,429 patients.

View Article and Find Full Text PDF
Article Synopsis
  • Accurate intraoperative diagnosis of primary CNS lymphoma (PCNSL) is challenging due to overlapping features with other CNS conditions, but a new method combining stimulated Raman histology (SRH) and deep learning seeks to improve this.
  • The deep learning system, RapidLymphoma, analyzes unprocessed tissue samples quickly, achieving high accuracy in distinguishing PCNSL from other entities, with an overall accuracy of 97.81% in a test cohort.
  • RapidLymphoma not only provides rapid diagnostic results but also visual feedback, aiding surgical decision-making and potential treatment strategies within a critical timeframe.
View Article and Find Full Text PDF

Background: In many cancers, specific subtypes are more prevalent in specific racial backgrounds. However, little is known about the racial distribution of specific molecular types of brain tumors. Public data repositories lack data on many brain tumor subtypes as well as diagnostic annotation using the current World Health Organization classification.

View Article and Find Full Text PDF

Background: In-field or in-margin recurrence after partial gland cryosurgical ablation (PGCA) of prostate cancer (PCa) remains a limitation of the paradigm. Stimulated Raman histology (SRH) is a novel microscopic technique allowing real time, label-free, high-resolution microscopic images of unprocessed, un-sectioned tissue which can be interpreted by humans or artificial intelligence (AI). We evaluated surgical team and AI interpretation of SRH for real-time pathologic feedback in the planning and treatment of PCa with PGCA.

View Article and Find Full Text PDF

Background And Objectives: Intraoperative red blood cell (RBC) salvage is frequently used in contemporary spine surgery, despite clinical concern in its efficacy as a surrogate for blood-banked allogeneic packed RBCs (pRBCs). During spine surgery, salvaged RBCs (sRBCs) are exposed to injurious high-heat electrocautery, prolonged stasis, and abrasive pharmaceuticals, potentially making sRBCs a poor blood substitute. We therefore sought to scientifically and objectively define the quality of sRBCs in the context of complex spine surgery.

View Article and Find Full Text PDF

The most widely used fluorophore in glioma-resection surgery, 5-aminolevulinic acid (5-ALA), is thought to cause the selective accumulation of fluorescent protoporphyrin IX (PpIX) in tumour cells. Here we show that the clinical detection of PpIX can be improved via a microscope that performs paired stimulated Raman histology and two-photon excitation fluorescence microscopy (TPEF). We validated the technique in fresh tumour specimens from 115 patients with high-grade gliomas across four medical institutions.

View Article and Find Full Text PDF

The diagnosis and treatment of tumors often depends on molecular-genetic data. However, rapid and iterative access to molecular data is not currently feasible during surgery, complicating intraoperative diagnosis and precluding measurement of tumor cell burdens at surgical margins to guide resections. To address this gap, we developed Ultra-Rapid droplet digital PCR (UR-ddPCR), which can be completed in 15 minutes from tissue to result with an accuracy comparable to standard ddPCR.

View Article and Find Full Text PDF

Purpose: DNA methylation profiling stratifies isocitrate dehydrogenase (IDH)-mutant astrocytomas into methylation low- and high-grade groups. We investigated the utility of the T2-fluid-attenuated inversion recovery (T2-FLAIR) mismatch sign for predicting DNA methylation grade and cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion, a molecular biomarker for grade 4 IDH-mutant astrocytomas, according to the 2021 World Health Organization classification.

Experimental Design: Preoperative MRI scans of IDH-mutant astrocytomas subclassified by DNA methylation profiling (n = 71) were independently evaluated by two radiologists for the T2-FLAIR mismatch sign.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase (IDH) mutant astrocytoma grading, until recently, has been entirely based on morphology. The 5th edition of the Central Nervous System World Health Organization (WHO) introduces CDKN2A/B homozygous deletion as a biomarker of grade 4. We sought to investigate the prognostic impact of DNA methylation-derived molecular biomarkers for IDH mutant astrocytoma.

View Article and Find Full Text PDF

Purpose: Stimulated Raman histology is an innovative technology that generates real-time, high-resolution microscopic images of unprocessed tissue, significantly reducing prostate biopsy interpretation time. This study aims to evaluate the ability for an artificial intelligence convolutional neural network to interpretate prostate biopsy histologic images created with stimulated Raman histology.

Materials And Methods: Unprocessed, unlabeled prostate biopsies were prospectively imaged using a stimulated Raman histology microscope.

View Article and Find Full Text PDF

Unlabelled: DNA methylation is an essential molecular assay for central nervous system (CNS) tumor diagnostics. While some fusions define specific brain tumors, others occur across many different diagnoses. We performed a retrospective analysis of 219 primary CNS tumors with whole genome DNA methylation and RNA next-generation sequencing.

View Article and Find Full Text PDF

Background: A rapid, low-cost blood test that can be applied to reliably detect multiple different cancer types would be transformational.

Methods: In this large-scale discovery study (n = 2092 patients) we applied the Dxcover® Cancer Liquid Biopsy to examine eight different cancers. The test uses Fourier transform infrared (FTIR) spectroscopy and machine-learning algorithms to detect cancer.

View Article and Find Full Text PDF
Article Synopsis
  • This study focuses on a clinical trial exploring the use of adenoviral vectors to enhance immune responses in patients with high-grade gliomas, which are aggressive brain tumors with poor treatment outcomes.
  • The trial involved administering two specific vectors (HSV1-TK and Flt3L) into the tumor site of treatment-naive adults, using a dose-finding approach to evaluate safety and potential effectiveness.
  • Conducted at the University of Michigan, the study aimed to assess how these vectors could stimulate anti-tumor immunity and improve patient prognosis after standard treatment protocols.
View Article and Find Full Text PDF

Learning high-quality, self-supervised, visual representations is essential to advance the role of computer vision in biomedical microscopy and clinical medicine. Previous work has focused on self-supervised representation learning (SSL) methods developed for instance discrimination and applied them directly to image patches, or fields-of-view, sampled from gigapixel whole-slide images (WSIs) used for cancer diagnosis. However, this strategy is limited because it (1) assumes patches from the same patient are independent, (2) neglects the patient-slide-patch hierarchy of clinical biomedical microscopy, and (3) requires strong data augmentations that can degrade downstream performance.

View Article and Find Full Text PDF

The AI era in medicine has ushered in new opportunities to improve the diagnosis and treatment of human disease. CHARM, an AI algorithm described in this issue, has the potential to streamline molecular classification, intraoperative diagnosis, surgical decision making, and trial enrollment for glioma patients.

View Article and Find Full Text PDF

Background And Purpose: Most multinodular and vacuolating neuronal tumors (MVNTs) are diagnosed and followed radiologically without any change across time. There are no surveillance guidelines or quantitative volumetric assessments of these tumors. We evaluated MVNT volumes during long follow-up periods using segmentation tools with the aim of quantitative assessment.

View Article and Find Full Text PDF

Background: Central nervous system (CNS) cancer is the 10th leading cause of cancer-associated deaths for adults, but the leading cause in pediatric patients and young adults. The variety and complexity of histologic subtypes can lead to diagnostic errors. DNA methylation is an epigenetic modification that provides a tumor type-specific signature that can be used for diagnosis.

View Article and Find Full Text PDF

Purpose: While the T2-FLAIR mismatch sign is highly specific for isocitrate dehydrogenase (IDH)-mutant, 1p/19q-noncodeleted astrocytomas among lower-grade gliomas, its utility in WHO grade 4 gliomas is not well-studied. We derived the partial T2-FLAIR mismatch sign as an imaging biomarker for IDH mutation in WHO grade 4 gliomas.

Methods: Preoperative MRI scans of adult WHO grade 4 glioma patients (n = 2165) from the multi-institutional ReSPOND (Radiomics Signatures for PrecisiON Diagnostics) consortium were analyzed.

View Article and Find Full Text PDF

Introduction: Renal tumor biopsy requires adequate tissue sampling to aid in the investigation of small renal masses. In some centers the contemporary nondiagnostic renal mass biopsy rate may be as high as 22% and may be as high as 42% in challenging cases. Stimulated Raman Histology (SRH) is a novel microscopic technique which has created the possibility for rapid, label-free, high-resolution images of unprocessed tissue which may be viewed on standard radiology viewing platforms.

View Article and Find Full Text PDF

Stimulated Raman histology (SRH) is an ex vivo optical imaging method that enables microscopic examination of fresh tissue intraoperatively. The conventional intraoperative method uses frozen section analysis, which is labor and time intensive, introduces artifacts that limit diagnostic accuracy, and consumes tissue. SRH imaging allows rapid microscopic imaging of fresh tissue, avoids tissue loss, and enables remote telepathology review.

View Article and Find Full Text PDF