Publications by authors named "Orren D"

Most tumors initially respond to treatment, yet refractory clones subsequently develop owing to resistance mechanisms associated with cancer cell plasticity and heterogeneity. We used a chemical biology approach to identify protein targets in cancer cells exhibiting diverse driver mutations and representing models of tumor lineage plasticity and therapy resistance. An unbiased screen of a drug library was performed against cancer cells followed by synthesis of chemical analogs of the most effective drug.

View Article and Find Full Text PDF

This review delves into the molecular complexities underpinning the epithelial-to-mesenchymal transition (EMT) induced by cigarette smoke (CS) in human bronchial epithelial cells (HBECs). The complex interplay of pathways, including those related to WNT//β-catenin, TGF-β/SMAD, hypoxia, oxidative stress, PI3K/Akt, and NF-κB, plays a central role in mediating this transition. While these findings significantly broaden our understanding of CS-induced EMT, the research reviewed herein leans heavily on 2D cell cultures, highlighting a research gap.

View Article and Find Full Text PDF
Article Synopsis
  • Werner syndrome (WS) is an autosomal recessive disorder linked to the dysfunction of the WRN gene, resulting in symptoms that resemble accelerated aging.
  • The WRN protein has various important activities, including helicase and exonuclease functions, and is involved in handling complex DNA structures during replication and recombination.
  • Although the exact function of WRN is not fully understood, it is believed to play a crucial role in managing replication stress and preserving genome stability, especially in the telomeres.
View Article and Find Full Text PDF

Introduction: Kentucky is recognized as the state with the highest lung cancer burden for more than 2 decades, but how lung cancer differs in Kentucky relative to other US populations is not fully understood.

Patients And Methods: We examined lung cancer reported to the Surveillance, Epidemiology, and End Results (SEER) Program by Kentucky and the other SEER regions for patients diagnosed between 2012 and 2016. Our analyses included histologic types, incidence rates, stage at diagnosis, and survival in Kentucky and Appalachian Kentucky relative to other SEER regions.

View Article and Find Full Text PDF

Posttranslational acetylation modifications of proteins have important consequences for cell biology, including effects on protein trafficking and cellular localization as well as on the interactions of acetylated proteins with other proteins and macromolecules such as DNA. Experiments to uncover and characterize protein acetylation events have historically been more challenging than investigating another common posttranslational modification, protein phosphorylation. More recently, high-quality antibodies that recognize acetylated lysine residues present in acetylated proteins and improved proteomic methodologies have facilitated the discovery that acetylation occurs on numerous cellular proteins and allowed characterization of the dynamics and functional effects of many acetylation events.

View Article and Find Full Text PDF

Appalachian Kentucky (App KY) leads the nation in lung cancer incidence and mortality. Trace elements, such as As, have been associated with lung cancers in other regions of the country and we hypothesized that a population-based study would reveal higher trace element concentrations in App KY individuals with cancer compared to controls. Using toenail and drinking water trace element concentrations, this study investigated a possible association between lung cancer incidence and trace-element exposure in residents of this region.

View Article and Find Full Text PDF

Background: The evidence review processes for adding new conditions to state newborn screening (NBS) panels rely on data from pilot studies aimed at assessing the potential benefits and harms of screening. However, the consideration of ethical, legal, and social implications (ELSI) of screening within this research has been limited. This paper outlines important ELSI issues related to newborn screening policy and practices as a resource to help researchers integrate ELSI into NBS pilot studies.

View Article and Find Full Text PDF

Chronic exposure to arsenic, most often through contaminated drinking water, has been linked to several types of cancer in humans, including skin and lung cancer. However, the mechanisms underlying its role in causing cancer are not well understood. There is evidence that exposure to arsenic can enhance the carcinogenicity of UV light in inducing skin cancers and may enhance the carcinogenicity of tobacco smoke in inducing lung cancers.

View Article and Find Full Text PDF

Exposure to tobacco smoke is the number one risk factor for lung cancer. Although the DNA damaging properties of tobacco smoke have been well documented, relatively few studies have examined its effect on DNA repair pathways. This is especially true for the nucleotide excision repair (NER) pathway which recognizes and removes many structurally diverse DNA lesions, including those introduced by chemical carcinogens present in tobacco smoke.

View Article and Find Full Text PDF

Telomeric abnormalities caused by loss of function of the RecQ helicase WRN are linked to the multiple premature ageing phenotypes that characterize Werner syndrome. Here we examine WRN's role in telomeric maintenance, by comparing its action on a variety of DNA structures without or with telomeric sequences. Our results show that WRN clearly prefers to act on strand invasion intermediates in a manner that favours strand invasion and exchange.

View Article and Find Full Text PDF

Loss of Werner syndrome protein function causes Werner syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN's DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage.

View Article and Find Full Text PDF

Werner syndrome (WS), caused by loss of function of the RecQ helicase WRN, is a hereditary disease characterized by premature aging and elevated cancer incidence. WRN has DNA binding, exonuclease, ATPase, helicase and strand annealing activities, suggesting possible roles in recombination-related processes. Evidence indicates that WRN deficiency causes telomeric abnormalities that likely underlie early onset of aging phenotypes in WS.

View Article and Find Full Text PDF

Recent research indicates that hundreds of thousands of G-rich sequences within the human genome have the potential to form secondary structures known as G-quadruplexes. Telomeric regions, consisting of long arrays of TTAGGG/AATCCC repeats, are among the most likely areas in which these structures might form. Since G-quadruplexes assemble from certain G-rich single-stranded sequences, they might arise when duplex DNA is unwound such as during replication.

View Article and Find Full Text PDF

Expansion of CAG/CTG repeats causes certain neurological and neurodegenerative disorders, and the formation and subsequent persistence of stable DNA hairpins within these repeats are believed to contribute to CAG/CTG repeat instability. Human cells possess a DNA hairpin repair (HPR) pathway, which removes various (CAG)(n) and (CTG)(n) hairpins in a nick-directed and strand-specific manner. Interestingly, this HPR system processes a (CTG)(n) hairpin on the template DNA strand much less efficiently than a (CAG)(n) hairpin on the same strand (Hou, C.

View Article and Find Full Text PDF

Cells cope with blockage of replication fork progression in a manner that allows DNA synthesis to be completed and genomic instability minimized. Models for resolution of blocked replication involve fork regression to form Holliday junction structures. The human RecQ helicases WRN and BLM (deficient in Werner and Bloom syndromes, respectively) are critical for maintaining genomic stability and thought to function in accurate resolution of replication blockage.

View Article and Find Full Text PDF

The premature aging and cancer-prone disease Werner syndrome is caused by loss of function of the RecQ helicase family member Werner syndrome protein (WRN). At the cellular level, loss of WRN results in replication abnormalities and chromosomal aberrations, indicating that WRN plays a role in maintenance of genome stability. Consistent with this notion, WRN possesses annealing, exonuclease, and ATPase-dependent helicase activity on DNA substrates, with particularly high affinity for and activity on replication and recombination structures.

View Article and Find Full Text PDF

Background: WRN is a multi-functional protein involving DNA replication, recombination and repair. WRN acetylation has been demonstrated playing an important role in response to DNA damage. We previously found that WRN acetylation can regulate its enzymatic activities and nuclear distribution.

View Article and Find Full Text PDF

Dibenzo[a,l]pyrene (DBP) is the most potent tumor initiating polycyclic aromatic hydrocarbon tested to date in rodent tumor models. To investigate how DBP adduct formation and removal might influence carcinogenesis, we have examined the effects of treatment of several nucleotide excision repair (NER)-proficient (NER(+)) and -deficient (NER(-)) cell lines with the carcinogenic metabolite (+/-)-anti-DBP-11,12-diol-13,14-epoxide (DBPDE). The treatment of NER(-) cells with (+/-)-anti-DBPDE for 0.

View Article and Find Full Text PDF

Werner syndrome is an autosomal recessive disorder associated with premature aging and cancer predisposition caused by mutations of the WRN gene. WRN is a member of the RecQ DNA helicase family with functions in maintaining genome stability. Sir2, an NAD-dependent histone deacetylase, has been proven to extend life span in yeast and Caenorhabditis elegans.

View Article and Find Full Text PDF

The premature aging and cancer-prone disease Werner syndrome stems from loss of WRN protein function. WRN deficiency causes replication abnormalities, sensitivity to certain genotoxic agents, genomic instability and early replicative senescence in primary fibroblasts. As a RecQ helicase family member, WRN is a DNA-dependent ATPase and unwinding enzyme, but also possesses strand annealing and exonuclease activities.

View Article and Find Full Text PDF

The premature aging and cancer-prone diseases Werner and Bloom syndromes are caused by loss of function of WRN and BLM proteins, respectively. At the cellular level, WRN or BLM deficiency causes replication abnormalities, DNA damage hypersensitivity, and genome instability, suggesting that these proteins might participate in resolution of replication blockage. Although WRN and BLM are helicases belonging to the RecQ family, both have been recently shown to also facilitate pairing of complementary DNA strands.

View Article and Find Full Text PDF

Werner syndrome is a segmental progeroid disease characterized by increased cancer and acceleration of specific age-related phenotypes, due to loss of a protein known as WRN. Extensive research over the last decade has revealed much about WRN biochemistry and the etiology of Werner syndrome. WRN possesses multiple DNA-dependent enzymatic activities (ATPase, helicase, exonuclease, and strand annealing) and interacts with factors having established roles in DNA metabolic pathways.

View Article and Find Full Text PDF

Background: The cancer-prone and accelerated aging disease Werner syndrome is caused by loss of function of the WRN gene product that possesses ATPase, 3' to 5' helicase and 3' to 5' exonuclease activities. Although WRN has been most prominently suggested to function in telomere maintenance, resolution of replication blockage and/or recombinational repair, its exact role in DNA metabolism remains unclear. WRN is the only human RecQ family member to possess both helicase and exonuclease activity, but the mechanistic relationship between these activities is unknown.

View Article and Find Full Text PDF

Background: The premature aging and cancer-prone Werner and Bloom syndromes are caused by defects in the RecQ helicase enzymes WRN and BLM, respectively. Recently, both WRN and BLM (as well as several other RecQ members) have been shown to possess a strand annealing activity in addition to the requisite DNA unwinding activity. Since an annealing function would appear to directly oppose the action of a helicase, we have examined in this study the dynamic equilibrium between unwinding and annealing mediated by either WRN or BLM.

View Article and Find Full Text PDF