Publications by authors named "Orr Ofek"

Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay.

View Article and Find Full Text PDF

CB2 is a Gi protein-coupled receptor activated by endo- and phytocannabinoids, thus inhibiting stimulated adenylyl cyclase activity. CB2 is expressed in bone cells and Cb2 null mice show a marked age-related bone loss. CB2-specific agonists both attenuate and rescue ovariectomy-induced bone loss.

View Article and Find Full Text PDF

The CB1 cannabinoid receptor has been implicated in the regulation of bone remodeling and bone mass. A high bone mass (HBM) phenotype was reported in CB1-null mice generated on a CD1 background (CD1(CB1-/-) mice). By contrast, our preliminary studies in cb1-/- mice, backcrossed to C57BL/6J mice (C57(CB1-/-) mice), revealed low bone mass (LBM).

View Article and Find Full Text PDF

The endogenous cannabinoids bind to and activate two G protein-coupled receptors, the predominantly central cannabinoid receptor type 1 (CB1) and peripheral cannabinoid receptor type 2 (CB2). Whereas CB1 mediates the cannabinoid psychotropic, analgesic, and orectic effects, CB2 has been implicated recently in the regulation of liver fibrosis and atherosclerosis. Here we show that CB2-deficient mice have a markedly accelerated age-related trabecular bone loss and cortical expansion, although cortical thickness remains unaltered.

View Article and Find Full Text PDF