The biological clock in eukaryotes controls daily rhythms in physiology and behavior. It displays a complex organization that involves the molecular transcriptional clock and the redox oscillator which may coordinately work to control cellular rhythms. The redox oscillator has emerged very early in evolution in adaptation to the environmental changes in O levels and has been shown to regulate daily rhythms in glycerolipid (GL) metabolism in different eukaryotic cells.
View Article and Find Full Text PDFThere is currently an urgent need for new anthelmintic agents due to increasing resistance to the limited available drugs. The chalcone scaffold is a privileged structure for developing new drugs and has been shown to exhibit potential antiparasitic properties. We synthesized a series of chalcones via Claisen-Schmidt condensation, introducing a novel recoverable catalyst derived from biochar obtained from the pyrolysis of tree pruning waste.
View Article and Find Full Text PDFCys-loop receptors integrate a large family of pentameric ligand-gated ion channels that mediate fast ionotropic responses in vertebrates and invertebrates. Their vital role in converting neurotransmitter recognition into an electrical impulse makes these receptors essential for a great variety of physiological processes. In vertebrates, the Cys-loop receptor family includes the cation-selective channels, nicotinic acetylcholine and 5-hydroxytryptamine type 3 receptors, and the anion-selective channels, GABA and glycine receptors, whereas in invertebrates, the repertoire is significantly larger.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) comprise a family of pentameric ligand-gated ion channels widely distributed in the central and peripheric nervous system and in non-neuronal cells. nAChRs are involved in chemical synapses and are key actors in vital physiological processes throughout the animal kingdom. They mediate skeletal muscle contraction, autonomic responses, contribute to cognitive processes, and regulate behaviors.
View Article and Find Full Text PDFNematode parasitosis causes significant mortality and morbidity in humans and considerable losses in livestock and domestic animals. The acquisition of resistance to current anthelmintic drugs has prompted the search for new compounds for which the free-living nematode has emerged as a valuable platform. We have previously synthetized a small library of oxygenated tricyclic compounds and determined that dibenzo[]oxepin-11(6H)-one (doxepinone) inhibits motility.
View Article and Find Full Text PDFThe anthelmintic treatment of nematode infections remains the pillar of worm control in both human and veterinary medicine. Since control is threatened by the appearance of drug resistant nematodes, there is a need to develop novel compounds, among which phytochemicals constitute potential anthelmintic agents. Caenorhabditis elegans has been pivotal in anthelmintic drug discovery and in revealing mechanisms of drug action and resistance.
View Article and Find Full Text PDFNicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels involved in neuromuscular transmission. In nematodes, muscle nAChRs are targets of antiparasitic drugs. Bephenium is an anthelmintic compound whose molecular action in the free-living nematode , which is a model for anthelmintic drug discovery, is poorly known.
View Article and Find Full Text PDF