Publications by authors named "Ornella Ontanon"

Bacteria within the Paenibacillus genus are known to secrete a diverse array of enzymes capable of breaking down plant cell wall polysaccharides. We studied the extracellular xylanolytic activity of Paenibacillus xylanivorans and examined the complete range of secreted proteins when grown on carbohydrate-based carbon sources of increasing complexity, including wheat bran, sugar cane straw, beechwood xylan and sucrose, as control. Our data showed that the relative abundances of secreted proteins varied depending on the carbon source used.

View Article and Find Full Text PDF

Arabinoxylan is a major hemicellulose in the sugarcane plant cell wall with arabinose decorations that impose steric restrictions on the activity of xylanases against this substrate. Enzymatic removal of the decorations by arabinofuranosidases can allow a more efficient arabinoxylan degradation by xylanases. Here we produced and characterized a recombinant Bifidobacterium longum arabinofuranosidase from glycoside hydrolase family 43 (BlAbf43) and applied it, together with GH10 and GH11 xylanases, to produce xylooligosaccharides (XOS) from wheat arabinoxylan and alkali pretreated sugarcane bagasse.

View Article and Find Full Text PDF

One of the main distinguishing features of bacteria belonging to the Cellulomonas genus is their ability to secrete multiple polysaccharide degrading enzymes. However, their application in biomass deconstruction still constitutes a challenge. We addressed the optimisation of the xylanolytic activities in extracellular enzymatic extracts of Cellulomonas sp.

View Article and Find Full Text PDF

In the efficient bioconversion of polysaccharides from lignocellulosic biomass, endoglucanases and β-glucosidases are key enzymes for the deconstruction of β-glucans. In this work, we focused on a GH8 endoglucanase (Cel8Pa) and a GH1 β-glucosidase (Bg1Pa) from A59. Cel8Pa was active on a broad range of substrates, such as β-glucan from barley (24.

View Article and Find Full Text PDF

In this study, we used shotgun metagenomic sequencing to characterise the microbial metabolic potential for lignocellulose transformation in the gut of two colonies of Argentine higher termite species with different feeding habits, Cortaritermes fulviceps and Nasutitermes aquilinus. Our goal was to assess the microbial community compositions and metabolic capacity, and to identify genes involved in lignocellulose degradation. Individuals from both termite species contained the same five dominant bacterial phyla (Spirochaetes, Firmicutes, Proteobacteria, Fibrobacteres and Bacteroidetes) although with different relative abundances.

View Article and Find Full Text PDF

A xylanolytic bacterial strain, named A59, was isolated from a forest soil consortium in southern Argentina. Strain A59 is a Gram-stain-positive, facultative anaerobic, endospore-forming and rod-shaped bacterium. Its optimal growth conditions are 30 °C (range, 28-37 °C), pH 7 (range, pH 5-10) and it tolerates up to 7 % of NaCl (range, 2-7 %).

View Article and Find Full Text PDF

Glycoside hydrolase family 8 (GH8) includes endoglucanases, lichenases, chitosanases and xylanases, which are essential for polysaccharides breakdown. In this work, we studied a thermally stable GH8 from the cellulose synthase complex of Enterobacter sp. R1, for deconstruction of β-glucans.

View Article and Find Full Text PDF

Biomass hydrolysis constitutes a bottleneck for the biotransformation of lignocellulosic residues into bioethanol and high-value products. The efficient deconstruction of polysaccharides to fermentable sugars requires multiple enzymes acting concertedly. GH43 β-xylosidases are among the most interesting enzymes involved in hemicellulose deconstruction into xylose.

View Article and Find Full Text PDF

Acinetobacter guillouiae SFC 500-1A is an environmental bacterium able to efficiently co-remediate phenol and Cr(VI). To further understand the molecular mechanisms triggered in this strain during the bioremediation process, variations in the proteomic profile after treatment with phenol and phenol plus Cr(VI) were evaluated. The proteomic analysis revealed the induction of the β-ketoadipate pathway for phenol oxidation and the assimilation of degradation products through TCA cycle and glyoxylate shunt.

View Article and Find Full Text PDF

Chromium pollution is a problem that affects different areas worldwide and, therefore, must be solved. Bioremediation is a promising alternative to treat environmental contamination, but finding bacterial strains able to tolerate and remove different contaminants is a major challenge, since most co-polluted sites contain mixtures of organic and inorganic substances. In the present work, Bacillus sp.

View Article and Find Full Text PDF

Microbial bioremediation emerged some decades ago as an eco-friendly technology to restore polluted sites. Traditionally, the search for microorganisms suitable for bioremediation has been based on the selection of isolated strains able to remove a specific type of pollutant. However, this strategy has now become obsolete, since co-pollution is a global reality.

View Article and Find Full Text PDF

Phytoremediation has emerged as an attractive methodology to deal with environmental pollution, which is a serious worldwide problem. Although important advances have been made in this research field, there are still some drawbacks to become a widely used practice, such as the limited plant's metabolic rate and their difficulty to break down several organic compounds or to tolerate/accumulate heavy metals. However, biotechnology has opened new gateways in phytoremediation research by offering the opportunity for direct gene transfer to enhance plant capabilities for environmental cleanup.

View Article and Find Full Text PDF

Bioremediation has emerged as an environmental friendly strategy to deal with environmental pollution. Since the majority of polluted sites contain complex mixtures of inorganic and organic pollutants, it is important to find bacterial strains that can cope with multiple contaminants. In this work, a bacterial strain isolated from tannery sediments was identified as Acinetobacter guillouiae SFC 500-1A.

View Article and Find Full Text PDF

Phenolic compounds are contaminants frequently found in water and soils. In the last years, some technologies such as phytoremediation have emerged to remediate contaminated sites. Plants alone are unable to completely degrade some pollutants; therefore, their association with rhizospheric bacteria has been proposed to increase phytoremediation potential, an approach called rhizoremediation.

View Article and Find Full Text PDF