We report the occurrence of register-shifted structures in simulations of uracil-containing dsDNA. These occur when the 3' base vicinal to uracil is thymine in U:A base-paired DNA. Upon base flipping of uracil, this 3' thymine hydrogen bonds with the adenine across the uracil instead of its complementary base.
View Article and Find Full Text PDFUracil is a common DNA lesion which is recognized and removed by uracil DNA-glycosylase (UDG) as a part of the base excision repair pathway. Excision proceeds by base flipping, and UDG efficiency is thought to depend on the ease of deformability of the bases neighboring the lesion. We used molecular dynamics simulations to assess the flexibility of a large library of dsDNA strands, containing all tetranucleotide motifs with U:A, U:G, T:A or C:G base pairs.
View Article and Find Full Text PDFUracil DNA-glycosylase (UNG) is a DNA repair enzyme that removes the highly mutagenic uracil lesion from DNA using a base flipping mechanism. Although this enzyme has evolved to remove uracil from diverse sequence contexts, UNG excision efficiency depends on DNA sequence. To provide the molecular basis for rationalizing UNG substrate preferences, we used time-resolved fluorescence spectroscopy, NMR imino proton exchange measurements, and molecular dynamics simulations to measure UNG specificity constants (k/K) and DNA flexibilities for DNA substrates containing central AUT, TUA, AUA, and TUT motifs.
View Article and Find Full Text PDFThe focused confinement method (FCM) is a reaction coordinate-free simulation approach for the calculation of conformational free-energy differences in explicit solvent. The method uses reference states for the conformations of interest, partitions the solute into conformationally active and inactive regions, and requires the calculation of desolvation free energies of mixed harmonic-anharmonic states as part of its procedure. The reference states and partitioning affect the speed of convergence of FCM's constituent simulations in opposing manners, but in the thermodynamic limit, they have no effect on calculated conformational free-energy differences.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2019
We introduce the focused confinement method, a reaction coordinate-free simulation approach for the calculation of conformational free energies. These are obtained in a series of restrained simulations that transform part of the molecule of interest to independent harmonic oscillators resulting in mixed harmonic-anharmonic states. It is shown that the free energy difference between these mixed states can be readily calculated through the construction of chimeric trajectories.
View Article and Find Full Text PDFPeptidoglycan walls of gram positive bacteria are functionalized by glycopolymers called wall teichoic acid (WTA). In Listeria monocytogenes, multiple enzymes including the glucose-1-phosphate uridylyltransferase (GalU) were identified as mandatory for WTA galactosylation, so that the inhibition of GalU is associated with a significant attenuation of Listeria virulence. Herein, we report on a series of in silico predicted GalU inhibitors identified using structure-based virtual screening and experimentally validated to be effective in blocking the WTA galactosylation pathway in vitro.
View Article and Find Full Text PDFWall teichoic acid (WTA) comprises a class of glycopolymers covalently attached to the peptidoglycan of gram positive bacteria. In Listeria monocytogenes, mutations that prevent addition of certain WTA decorating sugars are attenuating. However, the steps required for decoration and the pathogenic process interrupted are not well described.
View Article and Find Full Text PDFPost-operative infection is a major risk associated with implantable devices. Prior studies have demonstrated the effectiveness of ionic silver as an alternative to antibiotic-based infection prophylaxis and treatment. The focus of this study is on an electrically activated implant system engineered for active release of antimicrobial silver ions.
View Article and Find Full Text PDFThe costs associated with the treatment of medical device and surgical site infections are a major cause of concern in the global healthcare system. To prevent transmission of such infections, a prophylactic surface system that provides protracted release of antibacterial silver ions using low intensity direct electric current (LIDC; 28 μA system current at 6 V) activation has been recently developed. To ensure the safety for future in vivo studies and potential clinical applications, this study assessed the biocompatibility of the LIDC-activated interdigitated silver electrodes-based surface system; in vitro toxicity to human epidermal keratinocytes, human dermal fibroblasts, and normal human osteoblasts, and antibacterial efficacy against Staphylococcus aureus and Escherichia coli was evaluated.
View Article and Find Full Text PDFA Listeria monocytogenes glcV mutation precludes the binding of certain listerial phages and produces a profound attenuation characterized by the absence of detectable mutants in the livers and spleens of orally inoculated mice. In vitro, we found that the mutant formed plaques on mouse enterocyte monolayers as efficiently as the parent but the plaques formed were smaller. Intracellular growth rate determinations and examination of infected enterocytes by light and fluorescence microscopy established that the mutant was impaired not in intracellular growth rate but in cell-to-cell spreading.
View Article and Find Full Text PDFExtracellular matrices utilized by biofilms growing on inert surfaces are generally produced entirely by the bacteria growing within those biofilms, whereas symbiotic (mutualistic) biofilms growing in or on a wide range of plants and animals utilize host-derived macromolecules, such as mucoid substances, as components of their extracellular matrix. Incorporation of host-derived molecules may have a profound effect on the resistance to antibiotics of symbiotic biofilms, which may have important implications for medicine and biology. As an initial probe of the potential effects of host-derived molecules in the extracellular matrix on the sensitivity of biofilms to antibiotics, an in vitro model was used to evaluate the effects of ciprofloxacin on biofilms grown in the presence and absence of SIgA, a host-derived glycoprotein associated with biofilms in the mammalian gut.
View Article and Find Full Text PDFGravid mammals are more prone to listeriosis than their nongravid counterparts. However, many features of the disease in gravid animals are not well defined. We determined, in mice, that increased susceptibility to lethal infection following oral inoculation begins surprisingly early in pregnancy and extends through embryonic development.
View Article and Find Full Text PDFAlthough mice associated with a single bacterial species have been used to provide a simple model for analysis of host-bacteria relationships, bacteria have been shown to display adaptability when grown in a variety of novel environments. In this study, changes associated with the host-bacterium relationship in mice monoassociated with Escherichia coli K-12 over a period of 1,031 days were evaluated. After 80 days, phenotypic diversification of E.
View Article and Find Full Text PDFA hallmark of cell-surface processes involving glycans is their multivalent interaction with glycan binding proteins (GBPs). Such a multivalent interaction depends critically on the mobility and density of signaling molecules on the membrane surface. While glycan microarrays have been used in exploring multivalent interactions, the lack of mobility and the difficulty in controlling surface density both limit their quantitative applications.
View Article and Find Full Text PDFOne of the primary factors limiting the efficacy of probiotic therapies is short persistence time. Utilizing a novel method for assessment of persistence in the large bowel independent of survival of the organisms in the upper GI tract, we tested whether overexpression of the type 1 pilus, a colonization factor, or the presence of secretory immunoglobulin A (sIgA) might increase the persistence time of a laboratory strain of E. coli in the gut.
View Article and Find Full Text PDFA Listeria monocytogenes bacteriophage was used to identify a phage-resistant Tn917 insertion mutant of the mouse-virulent listerial strain F6214-1. The mutant was attenuated when it was inoculated orally into female A/J mice and failed to replicate efficiently in cultured mouse enterocytes. Phage binding studies indicated that the mutant had a cell surface alteration that precluded phage attachment.
View Article and Find Full Text PDF