The E. coli transcriptome at the cell's poles (polar transcriptome) is unique compared to the membrane and cytosol. Several factors have been suggested to mediate mRNA localization to the membrane, but the mechanism underlying polar localization of mRNAs remains unknown.
View Article and Find Full Text PDFTmaR, the only known pole-localizer protein in Escherichia coli, was shown to cluster at the cell poles and control localization and activity of the major sugar regulator in a tyrosine phosphorylation-dependent manner. Here, we show that TmaR assembles by phase separation (PS) via heterotypic interactions with RNA in vivo and in vitro. An unbiased automated mutant screen combined with directed mutagenesis and genetic manipulations uncovered the importance of a predicted nucleic-acid-binding domain, a disordered region, and charged patches, one containing the phosphorylated tyrosine, for TmaR condensation.
View Article and Find Full Text PDFThe cyanobacterial circadian oscillator, consisting of KaiA, KaiB, and KaiC proteins, drives global rhythms of gene expression and compaction of the chromosome and regulates the timing of cell division and natural transformation. While the KaiABC posttranslational oscillator can be reconstituted in vitro, the Kai-based oscillator is subject to several layers of regulation in vivo. Specifically, the oscillator proteins undergo changes in their subcellular localization patterns, where KaiA and KaiC are diffuse throughout the cell during the day and localized as a focus at or near the pole of the cell at night.
View Article and Find Full Text PDFHfq, an Sm-like protein and the major RNA chaperone in E. coli, has been shown to distribute non-uniformly along a helical path under normal growth conditions and to relocate to the cell poles under certain stress conditions. We have previously shown that Hfq relocation to the poles is accompanied by polar accumulation of most small RNAs (sRNAs).
View Article and Find Full Text PDFThe mechanisms controlling membrane recognition by proteins with one hydrophobic stretch at their carboxyl terminus (tail anchor, TA) are poorly defined. The Escherichia coli TAs of ElaB and YqjD, which share sequential and structural similarity with the Saccharomyces cerevisiae TA of Fis1, were shown to localize to mitochondria. We show that YqjD and ElaB are directed by their TAs to bacterial cell poles.
View Article and Find Full Text PDFThe omnigenic/polygenic theory, which states that complex traits are not shaped by single/few genes, but by situation-specific large networks, offers an explanation for a major enigma in microbiology: deletion of specific small RNAs (sRNAs) playing key roles in various aspects of bacterial physiology, including virulence and antibiotic resistance, results in surprisingly subtle phenotypes. A recent study uncovered polar accumulation of most sRNAs upon osmotic stress, the majority not known to be involved in the applied stress. Here we show that cells deleted for a handful of pole-enriched sRNAs exhibit fitness defect in several stress conditions, as opposed to single, double, or triple sRNA-knockouts, implying that regulation by sRNA relies on sets of genes.
View Article and Find Full Text PDFCoupled transcription-translation (CTT) is a hallmark of prokaryotic gene expression. CTT occurs when ribosomes associate with and initiate translation of mRNAs whose transcription has not yet concluded, therefore forming "RNAP.mRNA.
View Article and Find Full Text PDFThe poles of cells are emerging as hubs for major sensory systems, but the polar determinants that allocate their components to the pole are largely unknown. Here, we describe the discovery of a previously unannotated protein, TmaR, which localizes to the cell pole when phosphorylated on a tyrosine residue. TmaR is shown here to control the subcellular localization and activity of the general PTS protein Enzyme I (EI) by binding and polar sequestration of EI, thus regulating sugar uptake and metabolism.
View Article and Find Full Text PDFOnly recently has it been recognized that the transcriptome of bacteria and archaea can be spatiotemporally regulated. All types of prokaryotic transcripts-rRNAs, tRNAs, mRNAs, and regulatory RNAs-may acquire specific localization and these patterns can be temporally regulated. In some cases bacterial RNAs reside in the vicinity of the transcription site, but in many others, transcripts show distinct localizations to the cytoplasm, the inner membrane, or the pole of rod-shaped species.
View Article and Find Full Text PDFRNA localization in eukaryotes is a mechanism to regulate transcripts fate. Conversely, bacterial transcripts were not assumed to be specifically localized. We previously demonstrated that E.
View Article and Find Full Text PDFAlthough the list of proteins that localize to the bacterial cell poles is constantly growing, little is known about their temporal behavior. EI, a major protein of the phosphotransferase system (PTS) that regulates sugar uptake and metabolism in bacteria, was shown to form clusters at the cell poles. We monitored the localization of EI clusters, as well as diffuse molecules, in space and time during the lifetime of cells.
View Article and Find Full Text PDFThe Sec system is responsible for protein insertion, translocation and secretion across membranes in all cells. The bacterial actin homolog MreB controls various processes, including cell wall synthesis, membrane organization and polarity establishment. Here we show that the two systems genetically interact and that components of the Sec system, especially the SecA motor protein, are essential for spatiotemporal organization of MreB in E.
View Article and Find Full Text PDFBacterial cells are intricately organized, despite the lack of membrane-bounded organelles. The extremely crowded cytoplasm promotes macromolecular self-assembly and formation of distinct subcellular structures, which perform specialized functions. For example, the cell poles act as hubs for signal transduction complexes, thus providing a platform for the coordination of optimal cellular responses to environmental cues.
View Article and Find Full Text PDFThe subcellular localization of RNA transcripts provides important insights into biological processes. Hence, understanding the mechanisms underlying RNA targeting is a high priority aim of modern cell biology. The advancements in imaging techniques, such as in situ hybridization and live-cell imaging, coupled with the evolution in optical microscopy led to the discovery that bacterial RNAs, despite the lack of nucleus, are specifically localized.
View Article and Find Full Text PDFBglG/LicT-like proteins are transcriptional antiterminators that prevent termination of transcription at intrinsic terminators by binding to ribonucleic antiterminator (RAT) sites and stabilizing an RNA conformation which is mutually exclusive with the terminator structure. The known RAT sites, which are located in intergenic regions of sugar utilization operons, show low sequence conservation but significant structural analogy. To assess the prevalence of RATs in bacterial genomes, we employed bioinformatic tools that describe RNA motifs based on both sequence and structural constraints.
View Article and Find Full Text PDFOne of the most important discoveries in the field of microbiology in the last two decades is that bacterial cells have intricate subcellular organization. This understanding has emerged mainly from the depiction of spatial and temporal organization of proteins in specific domains within bacterial cells, e.g.
View Article and Find Full Text PDFThe metV genomic island in the chromosome of uropathogenic Escherichia coli (UPEC) encodes a putative transcription factor and a sugar permease of the phosphotransferase system (PTS), which are predicted to compose a Bgl-like sensory system. The presence of these two genes, hereby termed pafR and pafP, respectively, has been previously shown to correlate with isolates causing clinical syndromes. We show here that deletion of both genes impairs the ability of the resulting mutant to infect the CBA/J mouse model of ascending urinary tract infection compared to that of the parent strain, CFT073.
View Article and Find Full Text PDFProteins of all living organisms must reach their subcellular destination to sustain the cell structure and function. The proteins are transported to one of the cellular compartments, inserted into the membrane, or secreted across the membrane to the extracellular milieu. Cells have developed various mechanisms to transport proteins across membranes, among them localized translation.
View Article and Find Full Text PDFUnlabelled: The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation.
View Article and Find Full Text PDFFEMS Microbiol Rev
September 2012
For many years, the bacterial cells were regarded as tiny vessels lacking internal organization. This view, which stemmed from the scarcity of membrane-bounded organelles, has changed considerably in recent years, mainly due to advancements in imaging capabilities. Consequently, despite the rareness of conventional organelles, bacteria are now known to have an intricate internal organization, which is vital for many cellular processes.
View Article and Find Full Text PDFThe field of bacterial cell biology has been revolutionized in the last decade by improvements in imaging capabilities which have revealed that bacterial cells, previously thought to be non-compartmentalized, possess an intricate higher-order organization. Many bacterial proteins localize to specific subcellular domains and regulate the spatial deployment of other proteins, DNA and lipids. Recently, the surprising discovery was made that bacterial RNA molecules are also specifically localized.
View Article and Find Full Text PDFThe traditional view of bacterial cells as non-compartmentalized, which is based on the lack of membrane-engulfed organelles, is currently being reassessed. Many studies in recent years led to the realization that bacteria have an intricate internal organization that is vital for various cellular processes. Specifically, various machineries were shown to localize to the poles of rod-shaped bacteria.
View Article and Find Full Text PDFUnderstanding the organization of a bacterial cell requires the elucidation of the mechanisms by which proteins localize to particular subcellular sites. Thus far, such mechanisms have been suggested to rely on embedded features of the localized proteins. Here, we report that certain messenger RNAs (mRNAs) in Escherichia coli are targeted to the future destination of their encoded proteins, cytoplasm, poles, or inner membrane in a translation-independent manner.
View Article and Find Full Text PDF