Publications by authors named "Orly Wapinski"

One of the hallmarks of the cerebral cortex is the extreme diversity of interneurons. The two largest subtypes of cortical interneurons, parvalbumin- and somatostatin-positive cells, are morphologically and functionally distinct in adulthood but arise from common lineages within the medial ganglionic eminence. This makes them an attractive model for studying the generation of cell diversity.

View Article and Find Full Text PDF

The on-target pioneer factors Ascl1 and Myod1 are sequence-related but induce two developmentally unrelated lineages-that is, neuronal and muscle identities, respectively. It is unclear how these two basic helix-loop-helix (bHLH) factors mediate such fundamentally different outcomes. The chromatin binding of Ascl1 and Myod1 was surprisingly similar in fibroblasts, yet their transcriptional outputs were drastically different.

View Article and Find Full Text PDF

ATAC-seq has become a leading technology for probing the chromatin landscape of single and aggregated cells. Distilling functional regions from ATAC-seq presents diverse analysis challenges. Methods commonly used to analyze chromatin accessibility datasets are adapted from algorithms designed to process different experimental technologies, disregarding the statistical and biological differences intrinsic to the ATAC-seq technology.

View Article and Find Full Text PDF

Direct reprogramming of fibroblasts to neurons induces widespread cellular and transcriptional reconfiguration. Here, we characterized global epigenomic changes during the direct reprogramming of mouse fibroblasts to neurons using whole-genome base-resolution DNA methylation (mC) sequencing. We found that the pioneer transcription factor Ascl1 alone is sufficient for inducing the uniquely neuronal feature of non-CG methylation (mCH), but co-expression of Brn2 and Mytl1 was required to establish a global mCH pattern reminiscent of mature cortical neurons.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) have been shown to act as important cell biological regulators including cell fate decisions but are often ignored in human genetics. Combining differential lncRNA expression during neuronal lineage induction with copy number variation morbidity maps of a cohort of children with autism spectrum disorder/intellectual disability versus healthy controls revealed focal genomic mutations affecting several lncRNA candidate loci. Here we find that a t(5:12) chromosomal translocation in a family manifesting neurodevelopmental symptoms disrupts specifically .

View Article and Find Full Text PDF

How transcription factors (TFs) reprogram one cell lineage to another remains unclear. Here, we define chromatin accessibility changes induced by the proneural TF Ascl1 throughout conversion of fibroblasts into induced neuronal (iN) cells. Thousands of genomic loci are affected as early as 12 hr after Ascl1 induction.

View Article and Find Full Text PDF
Article Synopsis
  • * A new method using transcription factors Ascl1 and Dlx2 effectively produces mature GABAergic neurons from human PSCs, allowing for distinct populations based on subtype-specific markers.
  • * The study also highlights the role of human collybistin in ensuring proper inhibitory synaptic function, aiding research on diseases that impact inhibitory transmission.
View Article and Find Full Text PDF

Direct lineage reprogramming is a promising approach for human disease modeling and regenerative medicine, with poorly understood mechanisms. Here, we reveal a hierarchical mechanism in the direct conversion of fibroblasts into induced neuronal (iN) cells mediated by the transcription factors Ascl1, Brn2, and Myt1l. Ascl1 acts as an "on-target" pioneer factor by immediately occupying most cognate genomic sites in fibroblasts.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are thought to be prevalent regulators of gene expression, but the consequences of lncRNA inactivation in vivo are mostly unknown. Here, we show that targeted deletion of mouse Hotair lncRNA leads to derepression of hundreds of genes, resulting in homeotic transformation of the spine and malformation of metacarpal-carpal bones. RNA sequencing and conditional inactivation reveal an ongoing requirement of Hotair to repress HoxD genes and several imprinted loci such as Dlk1-Meg3 and Igf2-H19 without affecting imprinting choice.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) are increasingly appreciated as regulators of cell-specific gene expression. Here, an enhancer-like lncRNA termed NeST (nettoie Salmonella pas Theiler's [cleanup Salmonella not Theiler's]) is shown to be causal for all phenotypes conferred by murine viral susceptibility locus Tmevp3. This locus was defined by crosses between SJL/J and B10.

View Article and Find Full Text PDF

In adult stem cell lineages, progenitor cells commonly undergo mitotic transit amplifying (TA) divisions before terminal differentiation, allowing production of many differentiated progeny per stem cell division. Mechanisms that limit TA divisions and trigger the switch to differentiation may protect against cancer by preventing accumulation of oncogenic mutations in the proliferating population. Here we show that the switch from TA proliferation to differentiation in the Drosophila male germline stem cell lineage is mediated by translational control.

View Article and Find Full Text PDF

A new class of transcripts, long noncoding RNAs (lncRNAs), has been recently found to be pervasively transcribed in the genome. Multiple lines of evidence increasingly link mutations and dysregulations of lncRNAs to diverse human diseases. Alterations in the primary structure, secondary structure, and expression levels of lncRNAs as well as their cognate RNA-binding proteins underlie diseases ranging from neurodegeneration to cancer.

View Article and Find Full Text PDF

The ubiquitin-proteasome system catalyzes the degradation of intracellular proteins. Although ubiquitination of proteins determines their stabilities, there is growing evidence that proteasome function is also regulated. We report the functional characterization of a conserved proteasomal regulatory complex.

View Article and Find Full Text PDF

Background: Hydrodynamic injection is an effective method for DNA delivery in mouse liver and is being translated to larger animals for possible clinical use. Similarly, phiC31 integrase has proven effective in mediating long-term gene therapy in mice when delivered by hydrodynamic injection and is being considered for clinical gene therapy applications. However, chromosomal aberrations have been associated with phiC31 integrase expression in tissue culture, leading to questions about safety.

View Article and Find Full Text PDF