Publications by authors named "Orly Ben-nun-shaul"

Sepsis is an excessive, dysregulated immune response to infection that activates inflammatory and coagulation cascades, which may lead to tissue injury, multiple organ dysfunction syndrome and death. Millions of individuals die annually of sepsis. To date, the only treatment available is antibiotics, drainage of the infection source when possible, and organ support in intensive care units.

View Article and Find Full Text PDF

Viruses are remarkable self-assembled nanobiomaterial-based machines, exposed to a wide range of pH values. Extreme pH values can induce dramatic structural changes, critical for the function of the virus nanoparticles, including assembly and genome uncoating. Tuning cargo-capsid interactions is essential for designing virus-based delivery systems.

View Article and Find Full Text PDF

Multivalent ions affect the structure and organization of virus nanoparticles. Wild-type simian virus 40 (wt SV40) is a nonenveloped virus belonging to the polyomavirus family, whose external diameter is 48.4 nm.

View Article and Find Full Text PDF

Crystallization is a fundamental and ubiquitous process that is well understood in the case of atoms or small molecules, but its outcome is still hard to predict in the case of nanoparticles or macromolecular complexes. Controlling the organization of virus nanoparticles into a variety of 3D supramolecular architectures is often done by multivalent ions and is of great interest for biomedical applications such as drug or gene delivery and biosensing, as well as for bionanomaterials and catalysis. In this paper, we show that slow dialysis, over several hours, of wild-type Simian Virus 40 (wt SV40) nanoparticle solution against salt solutions containing MgCl, with or without added NaCl, results in wt SV40 nanoparticles arranged in a body cubic center crystal structure with Im3m space group, as a thermodynamic product, in coexistence with soluble wt SV40 nanoparticles.

View Article and Find Full Text PDF

SV40 large T-antigen (T-ag) has been known for decades to inactivate the tumor suppressor p53 by sequestration and additional mechanisms. Our present study revealed that the struggle between p53 and T-ag begins very early in the infection cycle. We found that p53 is activated early after SV40 infection and defends the host against the infection.

View Article and Find Full Text PDF

Polyomaviruses are a diverse family of viruses which are prevalent in the human population. However, the interactions of these viruses with the immune system are not well characterized. We have previously shown that two human polyomaviruses, JC and BK, use an identical microRNA to evade immune attack by Natural Killer (NK) cells.

View Article and Find Full Text PDF

A pathogen's ability to engage host receptors is a critical determinant of its host range and interspecies transmissibility, key issues for understanding emerging diseases. However, the identification of host receptors, which are also attractive drug targets, remains a major challenge. Our structural bioinformatics studies reveal that both bacterial and viral pathogens have evolved to structurally mimic native host ligands (ligand mimicry), thus enabling engagement of their cognate host receptors.

View Article and Find Full Text PDF

The canonical gate of viruses and viral genomes into the nucleus in non-dividing cells is the nuclear pore, embedded within the nuclear envelope. However, we found that for SV40, the nuclear envelope poses a major hurdle to infection: FISH analysis revealed that the majority of viral DNA remains trapped in the ER; silencing of Lamin A/C rendered the cells more susceptible to infection; and proliferating cells are more susceptible to infection than quiescent cells. Surprisingly, we observed that following SV40 infection the nuclear envelope, including lamins A/C, B1, B2 and the nuclear pore complex, was dramatically deformed, as seen by immunohistochemistry.

View Article and Find Full Text PDF

SV40 titer is determined traditionally by the conventional plaque assay. Plaques appear after several rounds of infection and the assay takes around two weeks, which may delay research. A simpler assay was developed, based on detection of T-antigen in the infected cells by flow cytometry.

View Article and Find Full Text PDF

The simian virus 40 (SV40) outer shell is composed of 72 pentamers of VP1. The core of the VP1 monomer is a beta-barrel with jelly-roll topology and extending N- and C-terminal arms. A pentapeptide hinge, KNPYP, tethers the C-arm to the VP1 beta-barrel core.

View Article and Find Full Text PDF

Objectives: Viral vector uptake into the pancreas is rare. The few viral vectors reported to transduce in vivo pancreatic islets after systemic injection required additional physical measures, such as direct pancreatic injection or hepatic vessel clamping. Because pancreatic islet uptake of the human polyomavirus family member BK virus was previously reported in hamsters after systemic administration, we hypothesized that SV40, a polyomavirus member remarkably similar to BK virus, may also infect the pancreas.

View Article and Find Full Text PDF

SV40 is a small, non enveloped DNA virus with an icosahedral capsid of 45 nm. The outer shell is composed of pentamers of the major capsid protein, VP1, linked via their flexible carboxy-terminal arms. Its morphogenesis occurs by assembly of capsomers around the viral minichromosome.

View Article and Find Full Text PDF

Background/aims: Chronic HBV infection, a world-wide epidemic, can lead to chronic hepatitis and eventually to cirrhosis and hepatocellular carcinoma. The liver poses obstacles for many available gene-transfer vectors. SV40-based vectors can transduce human hepatic and hematopoietic cells.

View Article and Find Full Text PDF

Simian virus 40 (SV40) vectors are efficient vehicles for gene delivery to hematopoietic and hepatic cells. To ensure their replication incompetence and because of safety considerations, it is critical that the vectors do not contain T-antigen sequences. Available packaging cell lines for T-antigen replacement vectors, COS and CMT4, contain considerable sequence identity with the vectors, leading to homologous recombination and reacquisition of the T-antigen gene.

View Article and Find Full Text PDF

Simian virus 40 (SV40) capsid assembly occurs in the nucleus. All three capsid proteins bind DNA nonspecifically, raising the dilemma of how they attain specificity to the SV40 minichromosome in the presence of a large excess of genomic DNA. The SV40 packaging signal, ses, which is required for assembly, is composed of multiple DNA elements that bind transcription factor Sp1.

View Article and Find Full Text PDF

A procedure for in vitro packaging of plasmid DNA in recombinant SV40 capsid proteins was developed by Sandalon et al. (1997). Here, we report the highly efficient transduction into different human, murine and monkey cell lines using a scaled-up protocol for producing SV40 pseudovirions, packaged in vitro, carrying the human multidrug-resistance gene MDR1 encoding P-glycoprotein (P-gp) or the green fluorescent protein reporter gene (GFP) under control of SV40 and cytomegalovirus (CMV) promoters.

View Article and Find Full Text PDF