Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations.
View Article and Find Full Text PDFAn absolutely and relatively large brain has traditionally been viewed as a distinctive characteristic of the Homo genus, with anatomically modern humans presented at the apex of a long line of progressive increases in encephalization. Many studies continue to focus attention on increasing brain size in the Homo genus, while excluding measures of absolute and relative brain size of more geologically recent, smaller brained, hominins such as Homo floresiensis, and Homo naledi and smaller brained Homo erectus specimens. This review discusses the benefits of using phylogenetic comparative methods to trace the diverse changes in hominin brain evolution and the drawbacks of not doing so.
View Article and Find Full Text PDFNeurosci Biobehav Rev
March 2022
Research on the origin of vision and vision loss in naturally "blind" animal species can reveal the tasks that vision fulfills and the brain's role in visual experience. Models that incorporate evolutionary history, natural variation in visual ability, and experimental manipulations can help disentangle visual ability at a superficial level from behaviors linked to vision but not solely reliant upon it, and could assist the translation of ophthalmological research in animal models to human treatments. To unravel the similarities between blind individuals and blind species, we review concepts of "blindness" and its behavioral correlates across a range of species.
View Article and Find Full Text PDFConsiderable controversy exists about which hypotheses and variables best explain mammalian brain size variation. We use a new, high-coverage dataset of marsupial brain and body sizes, and the first phylogenetically imputed full datasets of 16 predictor variables, to model the prevalent hypotheses explaining brain size evolution using phylogenetically corrected Bayesian generalized linear mixed-effects modelling. Despite this comprehensive analysis, litter size emerges as the only significant predictor.
View Article and Find Full Text PDFVisual-to-auditory sensory substitution devices (SSDs) provide improved access to the visual environment for the visually impaired by converting images into auditory information. Research is lacking on the mechanisms involved in processing data that is perceived through one sensory modality, but directly associated with a source in a different sensory modality. This is important because SSDs that use auditory displays could involve binaural presentation requiring both ear canals, or monaural presentation requiring only one - but which ear would be ideal? SSDs may be similar to reading, as an image (printed word) is converted into sound (when read aloud).
View Article and Find Full Text PDFNon-human primate neuroimaging is a rapidly growing area of research that promises to transform and scale translational and cross-species comparative neuroscience. Unfortunately, the technological and methodological advances of the past two decades have outpaced the accrual of data, which is particularly challenging given the relatively few centers that have the necessary facilities and capabilities. The PRIMatE Data Exchange (PRIME-DE) addresses this challenge by aggregating independently acquired non-human primate magnetic resonance imaging (MRI) datasets and openly sharing them via the International Neuroimaging Data-sharing Initiative (INDI).
View Article and Find Full Text PDFSince the publication of the primate brain volumetric dataset of Stephan and colleagues in the early 1980s, no major new comparative datasets covering multiple brain regions and a large number of primate species have become available. However, technological and other advances in the last two decades, particularly magnetic resonance imaging (MRI) and the creation of institutions devoted to the collection and preservation of rare brain specimens, provide opportunities to rectify this situation. Here, we present a new dataset including brain region volumetric measurements of 39 species, including 20 species not previously available in the literature, with measurements of 16 brain areas.
View Article and Find Full Text PDFKnowing who we are, and where we are, are two fundamental aspects of our physical and mental experience. Although the domains of spatial and social cognition are often studied independently, a few recent areas of scholarship have explored the interactions of place and self. This fits in with increasing evidence for embodied theories of cognition, where mental processes are grounded in action and perception.
View Article and Find Full Text PDF