Publications by authors named "Orla M Doyle"

Hepatitis C virus (HCV) remains a significant public health challenge with approximately half of the infected population untreated and undiagnosed. In this retrospective study, predictive models were developed to identify undiagnosed HCV patients using longitudinal medical claims linked to prescription data from approximately ten million patients in the United States (US) between 2010 and 2016. Features capturing information on demographics, risk factors, symptoms, treatments and procedures relevant to HCV were extracted from patients' medical history.

View Article and Find Full Text PDF

Nontuberculous mycobacterial lung disease (NTMLD) is a rare lung disease often missed due to a low index of suspicion and unspecific clinical presentation. This retrospective study was designed to characterise the prediagnosis features of NTMLD patients in primary care and to assess the feasibility of using machine learning to identify undiagnosed NTMLD patients.IQVIA Medical Research Data (incorporating THIN, a Cegedim Database), a UK electronic medical records primary care database was used.

View Article and Find Full Text PDF

Attention-Deficit Hyperactive Disorder (ADHD) is one of the most common mental health disorders amongst school-aged children with an estimated prevalence of 5% in the global population (American Psychiatric Association, 2013). Stimulants, particularly methylphenidate (MPH), are the first-line option in the treatment of ADHD (Reeves and Schweitzer, 2004; Dopheide and Pliszka, 2009) and are prescribed to an increasing number of children and adolescents in the US and the UK every year (Safer et al., 1996; McCarthy et al.

View Article and Find Full Text PDF

Cognitive control has traditionally been associated with pFC based on observations of deficits in patients with frontal lesions. However, evidence from patients with Parkinson disease indicates that subcortical regions also contribute to control under certain conditions. We scanned 17 healthy volunteers while they performed a task-switching paradigm that previously dissociated performance deficits arising from frontal lesions in comparison with Parkinson disease, as a function of the abstraction of the rules that are switched.

View Article and Find Full Text PDF

Neuroimaging-based models contribute to increasing our understanding of schizophrenia pathophysiology and can reveal the underlying characteristics of this and other clinical conditions. However, the considerable variability in reported neuroimaging results mirrors the heterogeneity of the disorder. Machine learning methods capable of representing invariant features could circumvent this problem.

View Article and Find Full Text PDF

An increasing number of neuroimaging studies are based on either combining more than one data modality (inter-modal) or combining more than one measurement from the same modality (intra-modal). To date, most intra-modal studies using multivariate statistics have focused on differences between datasets, for instance relying on classifiers to differentiate between effects in the data. However, to fully characterize these effects, multivariate methods able to measure similarities between datasets are needed.

View Article and Find Full Text PDF

Background: The disrupted in schizophrenia 1 (DISC1) gene locus was originally identified in a Scottish pedigree with a high incidence of psychiatric disorders that is associated with a balanced t(1;11)(q42.1;q14.3) chromosomal translocation.

View Article and Find Full Text PDF

Neuroimaging has been identified as a potentially powerful probe for the in vivo study of drug effects on the brain with utility across several phases of drug development spanning preclinical and clinical investigations. Specifically, neuroimaging can provide insight into drug penetration and distribution, target engagement, pharmacodynamics, mechanistic action and potential indicators of clinical efficacy. In this review, we focus on machine learning approaches for neuroimaging which enable us to make predictions at the individual level based on the distributed effects across the whole brain.

View Article and Find Full Text PDF

Background: Animal and human studies highlight the role of oxytocin in social cognition and behavior and the potential of intranasal oxytocin (IN-OT) to treat social impairment in individuals with neuropsychiatric disorders such as autism. However, extensive efforts to evaluate the central actions and therapeutic efficacy of IN-OT may be marred by the absence of data regarding its temporal dynamics and sites of action in the living human brain.

Methods: In a placebo-controlled study, we used arterial spin labeling to measure IN-OT-induced changes in resting regional cerebral blood flow (rCBF) in 32 healthy men.

View Article and Find Full Text PDF

We propose a novel approach to predicting disease progression in Alzheimer's disease (AD)--multivariate ordinal regression--which inherently models the ordered nature of brain atrophy spanning normal aging (CTL) to mild cognitive impairment (MCI) to AD. Ordinal regression provides probabilistic class predictions as well as a continuous index of disease progression--the ORCHID (Ordinal Regression Characteristic Index of Dementia) score. We applied ordinal regression to 1023 baseline structural MRI scans from two studies: the US-based Alzheimer's Disease Neuroimaging Initiative (ADNI) and the European based AddNeuroMed program.

View Article and Find Full Text PDF

The intricacy of brain biology is such that the variation of imaging end-points in health and disease exhibits an unpredictable range of spatial distributions from the extremely localized to the very diffuse. This represents a challenge for the two standard approaches to analysis, the mass univariate and the multivariate that exhibit either strong specificity but not as good sensitivity (the former) or poor specificity and comparatively better sensitivity (the latter). In this work, we develop an analytical methodology for positron emission tomography that operates an extraction ('shaving') of coherent patterns of signal variation while maintaining control of the type I error.

View Article and Find Full Text PDF

Decoding models based on pattern recognition (PR) are becoming increasingly important tools for neuroimaging data analysis. In contrast to alternative (mass-univariate) encoding approaches that use hierarchical models to capture inter-subject variability, inter-subject differences are not typically handled efficiently in PR. In this work, we propose to overcome this problem by recasting the decoding problem in a multi-task learning (MTL) framework.

View Article and Find Full Text PDF

In a small fraction of patients with schizophrenia or autism, alleles of copy-number variants (CNVs) in their genomes are probably the strongest factors contributing to the pathogenesis of the disease. These CNVs may provide an entry point for investigations into the mechanisms of brain function and dysfunction alike. They are not fully penetrant and offer an opportunity to study their effects separate from that of manifest disease.

View Article and Find Full Text PDF

Many disease processes are extremely complex and characterized by multiple stochastic processes interacting simultaneously. Current analytical approaches have included mechanistic models and machine learning (ML), which are often treated as orthogonal viewpoints. However, to facilitate truly personalized medicine, new perspectives may be required.

View Article and Find Full Text PDF

In most countries health policy is an important part of the political agenda. Yet few studies have examined the relationship between the two. This study investigates the association between health and voter turnout in Britain using the National Child Development Study.

View Article and Find Full Text PDF