: In this study, for the first time, we examined and compared the sensitivity of four patient-derived cutaneous melanoma cell lines to alpha radiation in vitro and analyzed it in view of cell nucleus area and the formation of double-strand breaks (DSB). Melanoma cells sensitivity to alpha radiation was compared to photon radiation effects. Furthermore, we compared the sensitivity of the melanoma cells to squamous cell carcinoma.
View Article and Find Full Text PDFReciprocal signaling between melanoma brain metastatic (MBM) cells and microglia reprograms the phenotype of both interaction partners, including upregulation of the transcription factor JunB in microglia. Here, we aimed to elucidate the impact of microglial JunB upregulation on MBM progression. For molecular profiling, we employed RNA-seq and reverse-phase protein array (RPPA).
View Article and Find Full Text PDFMetastatic (as well as tumor) microenvironments contain both cancer-promoting and cancer-restraining factors. The balance between these opposing forces determines the fate of cancer cells that disseminate to secondary organ sites. In search for microenvironmental drivers or inhibitors of metastasis, we identified, in a previous study, the beta subunit of hemoglobin (HBB) as a lung-derived antimetastatic factor.
View Article and Find Full Text PDFPrevious studies from our lab demonstrated that the crosstalk between brain-metastasizing melanoma cells and microglia, the macrophage-like cells of the central nervous system, fuels progression to metastasis. In the present study, an in-depth investigation of melanoma-microglia interactions elucidated a pro-metastatic molecular mechanism that drives a vicious melanoma-brain-metastasis cycle. We employed RNA-Sequencing, HTG miRNA whole transcriptome assay, and reverse phase protein arrays (RPPA) to analyze the impact of melanoma-microglia interactions on sustainability and progression of four different human brain-metastasizing melanoma cell lines.
View Article and Find Full Text PDFSyntenic genomic loci on human chromosome 8 and mouse chromosome 15 (mChr15) code for LY6/Ly6 (lymphocyte Ag 6) family proteins. The 23 murine family genes include eight genes that are flanked by the murine and genes and form an Ly6 subgroup referred to in this article as the Ly6a subfamily gene cluster. , also known as and , is a member of the Ly6a subfamily gene cluster.
View Article and Find Full Text PDFCancer heterogeneity is a result of genetic mutations within the cancer cells. Their proliferation is not only driven by autocrine functions but also under the influence of cancer microenvironment, which consists of normal stromal cells such as infiltrating immune cells, cancer-associated fibroblasts, endothelial cells, pericytes, vascular and lymphatic channels. The relationship between cancer cells and cancer microenvironment is a critical one and we are just on the verge to understand it on a molecular level.
View Article and Find Full Text PDFPrevious studies indicated that microglia cells upregulate the expression of aldolase C (ALDOC) in melanoma cells. The present study using brain-metastasizing variants from three human melanomas explores the functional role of ALDOC in the formation and maintenance of melanoma brain metastasis (MBM). ALDOC overexpression impacted differentially the malignant phenotype of these three variants.
View Article and Find Full Text PDFGranulocyte-monocyte colony stimulating factor (GM-CSF) is used as an adjuvant in various clinical and preclinical studies with contradictory results. These were attributed to opposing effects of GM-CSF on the immune or myeloid systems of the treated patients or to lack of optimal dosing regimens. The results of the present study point to inter-tumor heterogeneity as a possible mechanism accounting for the contrasting responses to GM-CSF incorporating therapies.
View Article and Find Full Text PDFMelanoma metastasis to the brain is one of the most frequent extracranial brain tumors. Cell surface gangliosides are elevated in melanoma metastasis; however, the metabolic regulatory mechanisms that govern these specific changes are poorly understood in melanoma particularly brain metastases (MBM) development. We found ganglioside GD3 levels significantly upregulated in MBM compared to lymph node metastasis (LNM) but not for other melanoma gangliosides.
View Article and Find Full Text PDFMol Cell Proteomics
March 2020
The prediction of metastatic properties from molecular analyses still poses a major challenge. Here we aimed at the classification of metastasis-related cell properties by proteome profiling making use of cutaneous and brain-metastasizing variants from single melanomas sharing the same genetic ancestry. Previous experiments demonstrated that cultured cells derived from these xenografted variants maintain a stable phenotype associated with a differential metastatic behavior: The brain metastasizing variants produce more spontaneous micro-metastases than the corresponding cutaneous variants.
View Article and Find Full Text PDFNeural repair after stroke involves initiation of a cellular proliferative program in the form of angiogenesis, neurogenesis, and molecular growth signals in the surrounding tissue elements. This cellular environment constitutes a niche in which regeneration of new blood vessels and new neurons leads to partial tissue repair after stroke. Cancer metastasis has similar proliferative cellular events in the brain and other organs.
View Article and Find Full Text PDFMelanoma has the highest propensity to metastasize to the brain compared to other cancers, as brain metastases are found frequently high in patients who have prolonged survival with visceral metastasis. Once disseminated in the brain, melanoma cells communicate with brain resident cells that include astrocytes and microglia. Microglia cells are the resident macrophages of the brain and are the main immunological cells in the CNS involved in neuroinflammation.
View Article and Find Full Text PDFThe development of melanoma brain metastasis is largely dependent on mutual interactions between the melanoma cells and cells in the brain microenvironment. Here, we report that the extracellular cysteine protease inhibitor cystatin C (CysC) is involved in these interactions. Microglia-derived factors upregulated CysC secretion by melanoma.
View Article and Find Full Text PDFIn an ongoing effort to identify molecular determinants regulating melanoma brain metastasis, we previously identified Angiopoietin-like 4 (ANGPTL4) as a component of the molecular signature of such metastases. The aim of this study was to determine the functional significance of ANGPTL4 in the shaping of melanoma malignancy phenotype, especially in the establishment of brain metastasis. We confirmed that ANGPTL4 expression is significantly higher in cells metastasizing to the brain than in cells from the cutaneous (local) tumor from the same melanoma in a nude mouse xenograft model, and also in paired clinical specimens of melanoma metastases than in primary melanomas from the same patients.
View Article and Find Full Text PDFWe previously identified the chemokine receptor CCR4 as part of the molecular signature of melanoma brain metastasis. The aim of this study was to determine the functional significance of CCR4 in melanoma brain metastasis. We show that CCR4 is more highly expressed by brain metastasizing melanoma cells than by local cutaneous cells from the same melanoma.
View Article and Find Full Text PDFSoluble pulmonary factors have been reported to be capable of inhibiting the viability of cancer cells that metastasize to the lung, but the molecular identity was obscure. Here we report the isolation and characterization of the beta subunit of hemoglobin as a lung-derived antimetastatic factor. Peptide mapping in the beta subunit of human hemoglobin (HBB) defined a short C-terminal region (termed Metox) as responsible for activity.
View Article and Find Full Text PDFBackground: Intersecting a genome-wide expression profile of metastatic and nonmetastatic human neuroblastoma xenograft variants with expression profiles of tumours from stage 1 and 4 neuroblastoma patients, we previously characterised hexokinase 2 (HK2) as a gene whose expression was upregulated in both metastatic neuroblastoma variants and tumours from stage 4 neuroblastoma patients.
Methods: Local and metastatic neuroblastoma cell variants as well as metastatic neuroblastoma cells genetically manipulated to downregulate the expression of HK2 were utilised for in vitro and in vivo examinations of the involvement of HK2 in neuroblastoma.
Results: Hexokinase 2 expression and its activity levels were increased in neuroblastoma metastatic variants as compared with the local variants.
Paired like homeobox 2B (PHOX2B) is a minimal residual disease (MRD) marker of neuroblastoma. The presence of MRD, also referred to as micro-metastases, is a powerful marker of poor prognosis in neuroblastoma. Lung metastasis is considered a terminal event in neuroblastoma.
View Article and Find Full Text PDFIn recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long noncoding RNAs in melanoma progression. We hypothesized that copy number alterations (CNAs) of intergenic nonprotein-coding domains could help identify long intergenic noncoding RNAs (lincRNAs) associated with metastatic cutaneous melanoma.
View Article and Find Full Text PDFV600E being the most common mutation in BRAF, leads to constitutive activation of the MAPK signaling pathway. The majority of V600E BRAF positive melanoma patients treated with the BRAF inhibitor vemurafenib showed initial good clinical responses but relapsed due to acquired resistance to the drug. The aim of the present study was to identify possible biomarkers associated with the emergence of drug resistant melanoma cells.
View Article and Find Full Text PDFMelanoma is the leading cause of skin cancer mortality. The major cause of melanoma mortality is metastasis to distant organs, frequently to the brain. The microenvironment plays a critical role in tumourigenesis and metastasis.
View Article and Find Full Text PDFBRAF mutations are frequent in cutaneous melanomas, and BRAF inhibitors (BRAFi) have shown remarkable clinical efficacy in BRAF mutant melanoma patients. However, acquired drug resistance can occur rapidly and tumor(s) often progresses thereafter. Various mechanisms of BRAFi resistance have recently been described; however, the mechanism of resistance remains controversial.
View Article and Find Full Text PDFBrain metastases occur frequently in melanoma patients with advanced disease whereby the prognosis is dismal. The underlying mechanisms of melanoma brain metastasis development are not well understood. Identification of molecular determinants regulating melanoma brain metastasis would advance the development of prevention and therapy strategies for this disease.
View Article and Find Full Text PDFRecent data suggest that the mechanisms determining whether a tumor cell reaching a secondary organ will enter a dormant state, progress toward metastasis, or go through apoptosis are regulated by the microenvironment of the distant organ. In neuroblastoma, 60-70% of children with high-risk disease will ultimately experience relapse due to the presence of micrometastases. The main goal of this study is to evaluate the role of the lung microenvironment in determining the fate of neuroblastoma lung metastases and micrometastases.
View Article and Find Full Text PDF