Biological aging can be described as accumulative, prolonged metabolic stress and is the major risk factor for cognitive decline and Alzheimer's disease (AD). Recently, we identified and described a quinone reductase 2 (QR2) pathway in the brain, in which QR2 acts as a removable memory constraint and metabolic buffer within neurons. QR2 becomes overexpressed with age, and it is possibly a novel contributing factor to age-related metabolic stress and cognitive deficit.
View Article and Find Full Text PDFAsymmetric subcellular mRNA localization allows spatial regulation of gene expression and functional compartmentalization. In neurons, localization of specific mRNAs to neurites is essential for cellular functioning. However, it is largely unknown how transcript sorting works in a sequence-specific manner.
View Article and Find Full Text PDFThe formation of memory for a novel experience is a critical cognitive capacity. The ability to form novel memories is sensitive to age-related pathologies and disease, to which prolonged metabolic stress is a major contributing factor. Presently, we describe a dopamine-dependent redox modulation pathway within the hippocampus of male mice that promotes memory consolidation.
View Article and Find Full Text PDFWith repeated practice, learned actions become more skilled, and eventually highly stereotypical. This transition is accompanied by a shift in striatal control over behaviour from ventral and dorsomedial striatum to dorsolateral striatum. The cholinergic interneurons (CINs) in the striatum are central to striatal computation.
View Article and Find Full Text PDFDopamine, alongside other neuromodulators, defines brain and neuronal states, through regulation of global and local mRNA translation. Yet, the signaling pathways underlying the effects of dopamine on mRNA translation and psychiatric disorders are not clear. In order to examine the molecular pathways downstream of dopamine receptors, we used genetic, pharmacologic, biochemical, and imaging methods, and found that activation of dopamine receptor D1 but not D2 leads to rapid dephosphorylation of eEF2 at Thr but not eIF2α in cortical primary neuronal culture in a time-dependent manner.
View Article and Find Full Text PDFBackground: Ketamine is an N-methyl-D-aspartate receptor antagonist, which on administration produces fast-acting antidepressant responses in patients with major depressive disorder. Yet, the mechanism underlying the antidepressant action of ketamine remains unclear.
Methods: To unravel the mechanism of action of ketamine, we treated wild-type C57BL/6 mice with calcium/calmodulin-dependent protein kinase II (CaMKII) specific inhibitor tatCN21 peptide.
Sporadic Alzheimer's disease (AD) is an incurable neurodegenerative disease with clear pathological hallmarks, brain dysfunction, and unknown etiology. Here, we tested the hypothesis that there is a link between genetic risk factors for AD, cellular metabolic stress, and transcription/translation regulation. In addition, we aimed at reversing the memory impairment observed in a mouse model of sporadic AD.
View Article and Find Full Text PDFUnderstanding the heterosynaptic interaction between glutamatergic and neuromodulatory synapses is highly important for revealing brain function in health and disease. For instance, the interaction between dopamine and glutamate neurotransmission is vital for memory and synaptic plasticity consolidation, and it is known to converge on extracellular signal-regulated kinase (ERK)-MAPK signaling in neurons. Previous studies suggest that dopamine induces N-methyl-D-aspartate (NMDA) receptor phosphorylation at the NR2B Y1472 subunit, influencing receptor internalization at the synaptic plasma membrane.
View Article and Find Full Text PDFAge-associated memory deterioration (and the decline in ability to acquire new information) is one of the major diseases of our era. Cognitive enhancement can be achieved by using psycho-stimulants, such as caffeine or nicotine, but very little is known about drugs that can enhance the consolidation phase of memories in the cortex, the brain structure considered to store, at least partially, long-term memories. We used cortex-dependent taste-learning paradigms to test the hypothesis that pharmacological manipulation of the translation initiation eIF2α, which plays a role in hippocampus-dependent memory, can enhance positive or negative forms of taste memories.
View Article and Find Full Text PDFmRNA translation, or protein synthesis, is a major component of the transformation of the genetic code into any cellular activity. This complicated, multistep process is divided into three phases: initiation, elongation, and termination. Initiation is the step at which the ribosome is recruited to the mRNA, and is regarded as the major rate-limiting step in translation, while elongation consists of the elongation of the polypeptide chain; both steps are frequent targets for regulation, which is defined as a change in the rate of translation of an mRNA per unit time.
View Article and Find Full Text PDFMemory consolidation is defined temporally based on pharmacological interventions such as inhibitors of mRNA translation (molecular consolidation) or post-acquisition deactivation of specific brain regions (systems level consolidation). However, the relationship between molecular and systems consolidation are poorly understood. Molecular consolidation mechanisms involved in translation initiation and elongation have previously been studied in the cortex using taste-learning paradigms.
View Article and Find Full Text PDFObjectives: To assess lifestyle factors including physical activity, smoking, alcohol consumption, and dietary habits in men and women with exceptional longevity.
Design: Retrospective cohort study.
Setting: A cohort of community-dwelling Ashkenazi Jewish individuals with exceptional longevity defined as survival and living independently at age 95 and older.
Unconventional myosins have been associated with hearing loss in humans, mice, and zebrafish. Mutations in myosin VI cause both recessive and dominant forms of nonsyndromic deafness in humans and deafness in Snell's waltzer mice associated with abnormal fusion of hair cell stereocilia. Although myosin VI has been implicated in diverse cellular processes such as vesicle trafficking and epithelial morphogenesis, the role of this protein in the sensory hair cells remains unclear.
View Article and Find Full Text PDFMyosin I isozymes have been implicated in various motile processes, including organelle translocation, ion-channel gating, and cytoskeleton reorganization. Unconventional myosins were among the first family of proteins found to be associated with hearing loss in both humans and mice. Here, we report the identification of a nonsense mutation, of a trinucleotide insertion leading to an addition of an amino acid, and of six missense mutations in MYO1A cDNA sequence in a group of hearing-impaired patients from Italy.
View Article and Find Full Text PDFThe transplantation of organs, which at first sight appears to be just a technical medical procedure, is, first and foremost a sociocultural action that gives expression to existential perceptions. In Israeli society, as in most western societies the donation of the body or parts of it, is interpreted as possible at a societal level, and not as a gift from one individual to another. The medical achievement inherent in organ transplantation brings forward the relationship between the body, death and society.
View Article and Find Full Text PDF