Reactive oxygen species (ROS) are implicated to play a role in initiating rheumatoid arthritis (RA) pathogenesis. We have investigated the mechanism(s) by which essential redox-active trace metals (RATM) may induce cell proliferation and cell death in rabbit synovial fibroblasts. These fibroblast-like synovial (FLS) cells, which express Toll-like receptor 4 (TLR4), were used as a model system that plays a role in potentially initiating RA through oxidative stress.
View Article and Find Full Text PDFWe have previously shown that reactive oxygen species (ROS) as prooxidants can activate Toll-like receptor 4 (TLR4) with the potential to initiate, propagate and maintain "sterile" inflammation of innate immunity, which plays a mediatory role in a host of human disease states. We now present new evidence that ROS can also activate TLR4 to counter the inflammatory phenotype by increasing the production of resolvin D1 (RvD1), which is a specialized anti-inflammatory and pro-resolving lipid mediator. We used primary murine peritoneal macrophages (pM) derived from both TLR4-WT and TLR4-KO mice as a cellular model.
View Article and Find Full Text PDFRheumatoid arthritis (RA) is a chronic autoimmune systemic inflammatory disease that is characterized by synovial inflammation and bone erosion. We have investigated the mechanism(s) by which essential trace metals may initiate and propagate inflammatory phenotypes in synovial fibroblasts. We used HIG-82, rabbit fibroblast-like synovial cells (FLS), as a model system for potentially initiating RA through oxidative stress.
View Article and Find Full Text PDFDisturbances in redox equilibrium in tissue can lead to inflammatory state, which is a mediatory factor in many human diseases. The mechanism(s) by which exogenous oxidants may activate an inflammatory response is not fully understood. Emerging evidence suggests that oxidant-induced Toll-like receptor 4 (TLR4) activation plays a major role in "sterile" inflammation.
View Article and Find Full Text PDFAgonists and pseudo-agonists for toll-like receptor 4 (TLR4) are common in our environment. Thus, human exposure to these agents may result in "priming or sensitization" of TLR4. A body of evidence suggests that LPS-mediated sensitization of TLR4 can increase the magnitude of responses to exogenous agents in multiple tissues.
View Article and Find Full Text PDFNecrotic cells passively release HMGB1, which can stimulate TLR4 in an autocrine fashion to potentially initiate "sterile" inflammation that maintains different disease states. We have shown that prooxidants can induce NF-κB activation through TLR4 stimulation. We examined whether prooxidants enhance HMGB1-induced TLR4 signaling through NF-κB activation.
View Article and Find Full Text PDFWe recently demonstrated that conditioned media (CM) from osteocytes enhances myogenic differentiation of myoblasts, suggesting that signaling from bone may be important for skeletal muscle myogenesis. The effect of CM was closely mimicked by prostaglandin E2 (PGE2), a bioactive lipid mediator in various physiological or pathological conditions. PGE2 is secreted at high levels by osteocytes and such secretion is further enhanced under loading conditions.
View Article and Find Full Text PDFTo study the role of c-Src kinase in pro-oxidant-induced stimulation of Toll-like receptor 4 (TLR4), we used lipopolysaccharide from Escherichia coli K12 (LPS-EK) and monophosphoryl lipid A, as TLR4-specific agonists and positive controls, and SIN-1 and potassium peroxychromate as pro-oxidant sources. We used the HEK-Blue mTLR4 cell line, which is stably transfected with mouse TLR4 and expresses optimized SEAP reporter under the control of a promoter inducible by NF-κB transcription factor. The level of SEAP released due to TLR4 stimulation was a measure of NF-κB activation.
View Article and Find Full Text PDFThe mechanism(s) by which cells can sense exogenous oxidants that may contribute to intracellular oxidative/nitrosative stress is not clear. The objective of this study was to determine how cells might respond to exogenous oxidants to potentially initiate, propagate and/or maintain inflammation associated with many human diseases through NF-κB activation. First, we used HEK-Blue cells that are stably transfected with mouse toll-like receptor 4 (mTLR4) or mouse TLR2.
View Article and Find Full Text PDFAlzheimer disease (AD) is characterized by chronic neuroinflammation, which may lead to dysfunction in neuronal circuits. Although reactive microglia are found in association with accumulation of beta amyloid (Aβ) plaques in the AD brain, their contribution to neuronal cell loss remains speculative. A major genetic risk factor for sporadic AD is inheritance of the apolipoprotein (apo) E4 allele, which has been shown to contribute significantly to neurodegeneration in AD.
View Article and Find Full Text PDFGlial activation and inflammation following brain injury may initiate and maintain the process of neurodegeneration. Both glia and neurons synthesize proinflammatory mediators such as interleukin 1 beta (IL-1beta), cytosolic phospholipase A2 (cPLA2), cyclooxygenase-2 (COX-2), and prostaglandins. The molecular mechanisms by which IL-1beta regulates inflammatory genes such as cPLA2 and COX-2 in glial and neuronal cells are poorly understood.
View Article and Find Full Text PDFNuclear factor kappa B (NF(kappa)B) transcription factor plays a key role in the expression of many genes involved in the inflammatory process. We used the Freund's Complete Adjuvant (FCA)-induced model of peripheral inflammation to investigate the anti-inflammatory effects of double stranded oligodeoxynucleotides (ODN) with consensus NF(kappa)B sequence as transcription factor decoys to inhibit NF(kappa)kappaB activation in the dorsal root ganglia (DRG). Local administration of the wild-type-, but not mutant-ODN decoy, dose-dependently inhibited edema formation and paw withdrawal latency as a measure of hyperalgesic response induced by FCA in rat paw.
View Article and Find Full Text PDFIncreased synthesis of substance P (SP) in the dorsal root ganglia (DRG) and enhanced axonal transport to and secretion from the primary afferent sensory neurons might enhance pain signalling in the spinal dorsal horn by modifying pronociceptive pathways. IL-1beta increases SP synthesis by enhancing the expression of preprotachykinin (PPT) mRNA encoding for SP and other tachykinins in the DRG. Stimulation of IL-1 receptor by IL-1beta may induce the phosphorylation of tyrosine residues in many effector proteins through the activation of p60c-src kinase.
View Article and Find Full Text PDFProg Neuropsychopharmacol Biol Psychiatry
May 2003
Retinoic acid-induced differentiation of SH-SY5Y human neuroblastoma cells results in the development of extensive neurite processes as well as changes in cell body morphology toward a neuronal phenotype. The authors have examined concurrent regulation of beta-amyloid precursor protein (APP) and inositol 1,4,5-trisphosphate receptor (insP(3)R) gene expression in SY5Y cells during neuronal differentiation. Of the multiple APP mRNA transcripts expressed in this cell line, retinoic acid treatment significantly increased the expression of APP(695) transcript while the level of total APP remained unchanged.
View Article and Find Full Text PDFUnilateral intraplantar injection of Freund's complete adjuvant (FCA) into 1 hind paw of rats was used as a model of peripheral inflammation and persistent pain in order to examine time course effects of a continuous barrage of nociceptive input on the second-messenger transducing systems in the spinal cord. cAMP, cGMP and inositol 1,4,5-trisphosphate (insP3) were extracted from the lumbosacral cord at days 1, 7, 14, 21 and 42 following FCA injection and quantified by either radioreceptor-assay (RRA) or radioimmunoassay (RIA). The lumbosacral contents of cAMP and cGMP when quantified in whole lumbosacral cord segment were not significantly changed by FCA treatment at all time points.
View Article and Find Full Text PDFWe have previously shown that the caudally directed biting and scratching response to repeated intrathecal (i.t.) injections of substance P (SP) is decreased by the third injection of SP and that this apparent desensitization to SP is less pronounced in mice pretreated with Freund's adjuvant.
View Article and Find Full Text PDF