In this paper, we present the design and performance of the upgraded University of Florida torsion pendulum facility for testing inertial sensor technology related to space-based gravitational wave observatories and geodesy missions. In particular, much work has been conducted on inertial sensor technology related to the Laser Interferometer Space Antenna (LISA) space gravitational wave observatory mission. A significant upgrade to the facility was the incorporation of a newly designed and fabricated LISA-like gravitational reference sensor (GRS) based on the LISA Pathfinder GRS.
View Article and Find Full Text PDFSince its initial discovery just over a decade ago, blinking of semiconductor nanocrystals has typically been described in terms of probability distributions for durations of bright, or "on," states and dark, or "off," states. These distributions are obtained by binning photon counts in order to construct a time series for emission intensity and then applying a threshold to distinguish on states from off states. By examining experimental data from CdSe/ZnS core/shell nanocrystals and by simulating this data according to a simple, two-state blinking model, we find that the apparent truncated power-law distributions of on times can depend significantly on the choices of binning time and threshold.
View Article and Find Full Text PDF