Publications by authors named "Orion S Rivers"

Strain 5675061 was isolated from a deep-sea microbial mat near hydrothermal vents within the Axial Seamount caldera on the Juan de Fuca Ridge (NE Pacific Ocean) and was taxonomically evaluated using a polyphasic approach. Morphological and chemotaxonomic properties are consistent with characteristics of the genus Streptomyces: aerobic Gram-stain-positive filaments that form spores, L,L-diaminopimelic acid in whole-cell hydrolysates, and iso-C as the major fatty acid. Phylogenetic analysis, genomic, and biochemical comparisons show close evolutionary relatedness to Streptomyces lonarensis NCL716, S.

View Article and Find Full Text PDF

Despite the progress in assisted reproductive techniques, there is still a lack of rapid and minimally invasive in situ approaches for further enhancements of female fertility. Therefore, we synthesized clinically relevant liposome nanoparticles for ovarian intrafollicular injection to allow in vivo cellular imaging for future drug delivery, using the mare as an animal model. Ovarian follicles of living mares were injected in vivo with fluorescently labeled liposomes.

View Article and Find Full Text PDF

Mineralizing pulmonary elastosis (MPE) is a rare and unique phenomenon that has been reported in humans, typically secondary to recurrent pulmonary haemorrhage. MPE has a complex histopathological appearance, often containing iron-calcium deposits that can be mistaken as fungal organisms or other inorganic material. This report documents the first case of MPE in an animal species.

View Article and Find Full Text PDF

Multicellular organisms must carefully regulate the timing, number, and location of specialized cellular development. In the filamentous cyanobacterium sp. strain PCC 7120, nitrogen-fixing heterocysts are interspersed between vegetative cells in a periodic pattern to achieve an optimal exchange of bioavailable nitrogen and reduced carbon.

View Article and Find Full Text PDF

Multicellular development requires the careful orchestration of gene expression to correctly create and position specialized cells. In the filamentous cyanobacterium Anabaena sp. strain PCC 7120, nitrogen-fixing heterocysts are differentiated from vegetative cells in a reproducibly periodic and physiologically relevant pattern.

View Article and Find Full Text PDF

Reports of mass coral mortality from disease have increased over the last two decades. Montipora white syndrome (MWS) is a tissue loss disease that has negatively impacted populations of the coral Montipora capitata in Kāne'ohe Bay, Hawai'i. Two types of MWS have been documented; a progressive disease termed chronic MWS (cMWS), that can be caused by Vibrio owensii strain OCN002, and a comparatively faster disease termed acute MWS (aMWS), that can be caused by Vibrio coralliilyticus strain OCN008.

View Article and Find Full Text PDF

The commitment of differentiating cells to a specialized fate is fundamental to the correct assembly of tissues within a multicellular organism. Because commitment is often irreversible, entry into and progression through this phase of development must be tightly regulated. Under nitrogen-limiting conditions, the multicellular cyanobacterium sp.

View Article and Find Full Text PDF

Unlabelled: To stabilize cellular integrity in the face of environmental perturbations, most bacteria, including cyanobacteria, synthesize and maintain a strong, flexible, three-dimensional peptidoglycan lattice. Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium capable of differentiating morphologically distinct nitrogen-fixing heterocyst cells in a periodic pattern.

View Article and Find Full Text PDF

Unlabelled: In the filamentous cyanobacterium Anabaena, patS and hetN encode peptide-derived signals with many of the properties of morphogens. These signals regulate the formation of a periodic pattern of heterocysts by lateral inhibition of differentiation. Here we show that intercellular transfer of the patS- and hetN-dependent developmental signals from heterocysts to vegetative cells requires HetC, a predicted ATP-binding cassette transporter (ABC transporter).

View Article and Find Full Text PDF

Levels of 2-oxoglutarate (2-OG) reflect nitrogen status in many bacteria. In heterocystous cyanobacteria, a spike in the 2-OG level occurs shortly after the removal of combined nitrogen from cultures and is an integral part of the induction of heterocyst differentiation. In this work, deletion of one of the two annotated trpE genes in Anabaena sp.

View Article and Find Full Text PDF

Formation and maintenance of a periodic pattern of nitrogen-fixing cells called heterocysts by the filamentous cyanobacterium Anabaena sp. strain PCC 7120 is dependent on regulators encoded by patS and hetN. In this study, genetic mosaic filaments that consisted of cells engineered to produce one of the developmental regulators flanked by target cells capable of reporting the activity of the developmental regulator were used to investigate the intercellular movement of patS- and hetN-dependent activity.

View Article and Find Full Text PDF

In response to a lack of environmental combined nitrogen, the filamentous cyanobacterium Anabaena sp. strain PCC 7120 differentiates nitrogen-fixing heterocyst cells in a periodic pattern. HetR is a transcription factor that coordinates the regulation of this developmental program.

View Article and Find Full Text PDF

Nitrogen-fixing heterocysts are arranged in a periodic pattern on filaments of the cyanobacterium Anabaena sp. strain PCC 7120 under conditions of limiting combined nitrogen. Patterning requires two inhibitors of heterocyst differentiation, PatS and HetN, which work at different stages of differentiation by laterally suppressing levels of an activator of differentiation, HetR, in cells adjacent to source cells.

View Article and Find Full Text PDF