Publications by authors named "Oriol Vallcorba"

A series of porous metalloporphyrin frameworks prepared from the 5,10,15,20-tetra(4-pyridyl)porphyrin (HTPyP) linker and four metal complexes, M(hfac) M = Cu(II), Zn(II), Co(II), and Ni(II) (hfac: 1,1,1,5,5,5-hexafluoroacetylacetonate), were obtained using supercritical CO (scCO) as a solvent. All the materials, named generically as [M-TPyP] , formed porous metal-organic frameworks (MOFs), with surface areas of ∼450 m g. All MOFs were formed through the coordination of the metal to the exocyclic pyridine moieties in the porphyrin linker.

View Article and Find Full Text PDF

Nephrolithiasis is a multifactor disease that produces nephrolites in the kidneys. Calcium oxalate hydrate (dihydrated, COD, or monohydrated, COM) stones are the most common ones with more than sixty percent incidence worldwide. They are related to different pathologies, COD with hypercalciuria and COM with hyperoxaluria.

View Article and Find Full Text PDF

The synthesis of 1D cobalt and zinc monometallic and heterometallic coordination polymers (CPs) was carried out applying one-pot synthetic methods by using either supercritical carbon dioxide or ethanol as the solvent. A collection of four 1D CPs were thus obtained by the combination of a metal (or a mixture of metals) with the linker 1,4-bis(4-pyridylmethyl)benzene. The used metallic complexes were zinc and cobalt hexafluoroacetylacetonate, which can easily incorporate pyridine ligands in the coordination sphere of the metal centre.

View Article and Find Full Text PDF

Wheland intermediates are usually unstable compounds and only a few have been isolated at very low temperatures. During our work on tyrosine kinase inhibitors, we studied the bromination of 7 in order to obtain a dibromo substituted pyrido[2,3-d]pyrimidin-7(8H)-one which could be orthogonally decorated. Surprisingly, treatment of 7 with 3 equiv.

View Article and Find Full Text PDF

A novel imidazolium halometallate molten salt with formula (trimim)[FeCl] (trimim: 1,2,3-trimethylimidazolium) was synthetized and studied with structural and physico-chemical characterization. Variable-temperature synchrotron X-ray powder diffraction (SXPD) from 100 to 400 K revealed two structural transitions at 200 and 300 K. Three different crystal structures were determined combining single crystal X-ray diffraction (SCXD), neutron powder diffraction (NPD), and SXPD.

View Article and Find Full Text PDF

The CIM-80 material (aluminum(iii)-mesaconate) has been synthetized in high yield through a novel green procedure involving water and urea as co-reactants. The CIM-80 material exhibits good thermal stability with a working range from RT to 350 °C with a small contraction upon desolvation. Moreover, this material is stable in water at different pH values (1-10) for at least one week, and shows a LC value higher than 2 mg mL.

View Article and Find Full Text PDF

Tricalcium silicate, the main constituent of Portland cement, hydrates to produce crystalline calcium hydroxide and calcium-silicate-hydrates (C-S-H) nanocrystalline gel. This hydration reaction is poorly understood at the nanoscale. The understanding of atomic arrangement in nanocrystalline phases is intrinsically complicated and this challenge is exacerbated by the presence of additional crystalline phase(s).

View Article and Find Full Text PDF

This contribution addresses standing questions about the nature and consequences of the ion self-assembly and magnetic structures, as well as the molecular motion of the crystalline structure as a function of the temperature, in halometalate materials based on imidazolium cation. We present the magnetic structure and magnetostructural correlations of 1-ethyl-2,3-dimethylimidazolium tetrachloridoferrate, (Edimim)[FeCl], resolved by neutron diffraction studies. Single-crystal, synchrotron powder X-ray diffraction and powder neutron diffraction techniques have been combined to follow the temperature evolution on its crystallographic structure from 2 K close to its melting point (340 K).

View Article and Find Full Text PDF

The characterization of the crystal structure, phase transitions, magnetic structure and dielectric properties has been carried out on [CH NH ][Co(COOH) ] (1) perovskite-like metal-organic compound through variable-temperature single-crystal and powder neutron and X-ray diffraction and relative permittivity measurements. The paraelectric to antiferroelectric-like phase transition observed at around 90 K is triggered by a structural phase transition; the structural studies show a change from Pnma space group at RT (1A) to P2 /n space group at low temperature (1B). This phase transition involves the occurrence of small distortions in the framework and counterions.

View Article and Find Full Text PDF

AgCuCrO(OH), a new Ag-Cu-Cr-O layered mixed oxide, prepared by soft hydrothermal heterogeneous reactions, is reported. The new phase is an oxyhydroxide and presents a structure with alternating brucite-like Cu-O and Ag-O layers connected by individual chromate groups. The crystallographic structure has been solved and refined from high resolution powder X-ray diffraction data and is supported by density functional theory calculations, yielding a triclinic, space group P1[combining macron], a = 5.

View Article and Find Full Text PDF

The results reported here represent the first direct experimental observations supporting the existence of a solid-to-solid phase transition induced by thermal treatment in magnetic ionic liquids (MILs). The phase transitions of the solid phases of 1,3-dimethylimidazolium tetrachloroferrate, DimimFeCl4, are closely related to its thermal history. Two series of solid-to-solid phase transitions can be described in this MIL: (i) from room temperature (RT) phase II [space group (s.

View Article and Find Full Text PDF

The synchrotron through-the-substrate X-ray microdiffraction technique (tts-μXRD) is extended to the structural study of microvolumes of crystals embedded in polished thin sections of compact materials [Rius, Labrador, Crespi, Frontera, Vallcorba & Melgarejo (2011 ▸). J.Synchrotron Rad.

View Article and Find Full Text PDF

We present the first magnetic phase of an ionic liquid with anion-π interactions, which displays a three-dimensional (3D) magnetic ordering below the Néel temperature, TN = 7.7 K. In this material, called Dimim[FeBr4], an exhaustive and systematic study involving structural and physical characterization (synchrotron X-ray, neutron powder diffraction, direct current and alternating current magnetic susceptibility, magnetization, heat capacity, Raman and Mössbauer measurements) as well as first-principles analysis (density functional theory (DFT) simulation) was performed.

View Article and Find Full Text PDF

In this paper we report the spectral properties of the stable radical adducts 1(•)-3(•), which are formed by an electron donor moiety, the carbazole ring, and an electron acceptor moiety, the polychlorotriphenylmethyl radical. The molecular structure of radical adduct 1(•) in the crystalline state shows a torsion angle of approximately 90° between the phenyl and the carbazole rings due to steric interactions. They exhibit a charge transfer band in the visible range of the electronic spectrum.

View Article and Find Full Text PDF

A new magnetic ionic liquid (MIL) with 3D antiferromagnetic ordering has been synthetized and characterized. The information obtained from magnetic characterization was supplemented by analysis of DFT calculations and the magneto-structural correlations. The result gives no evidence for direct iron-iron interactions, corroborating that the 3D magnetic ordering in MILs takes place via super-exchange coupling containing two diamagnetic atoms intermediaries.

View Article and Find Full Text PDF

δ Recycling is a simple procedure for directly extracting phase information from Patterson-type functions [Rius (2012). Acta Cryst. A68, 399-400].

View Article and Find Full Text PDF

A new three-dimensional hydroxide-arsenate compound called compound 2 has been synthesized by heating (in air) of the sarkinite phase, Mn(2)(OH)AsO(4) (compound 1), with temperature and time control. The crystal structure of this high-temperature compound has been solved by Patterson-function direct methods. A relevant feature of this new material is that it is actually the first member of the adamite-type family with mixed-valence manganese(II,III) and electronic conductivity.

View Article and Find Full Text PDF

The title compound, C(21)H(14)N(4)O(2)S, belongs to a family of molecules possessing nonlinear optical properties in solution. Its structure has been solved from laboratory X-ray powder diffraction data using a new direct-space structure solution method, where the atomic coordinates are directly used as parameters and the molecular geometry is described by restraints. The molecular packing is controlled by two systems of π-π interactions and one weak edge-to-face interaction.

View Article and Find Full Text PDF

Some theoretical and practical aspects of the application of transmission microdiffraction (µXRD) to thin sections (≤30 µm thickness) of samples fixed or deposited on substrates are discussed. The principal characteristic of this technique is that the analysed micro-sized region of the thin section is illuminated through the substrate (tts-µXRD). Fields that can benefit from this are mineralogy, petrology and materials sciences since they often require in situ lateral studies to follow the evolution of crystalline phases or to determine new crystal structures in the case of phase transitions.

View Article and Find Full Text PDF