Publications by authors named "Oriol Lopez-Sanchez"

The observation of micrometer size spin relaxation makes graphene a promising material for applications in spintronics requiring long-distance spin communication. However, spin dependent scatterings at the contact/graphene interfaces affect the spin injection efficiencies and hence prevent the material from achieving its full potential. While this major issue could be eliminated by nondestructive direct optical spin injection schemes, graphene's intrinsically low spin-orbit coupling strength and optical absorption place an obstacle in their realization.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDCs), together with other two-dimensional (2D) materials, have attracted great interest due to the unique optical and electrical properties of atomically thin layers. In order to fulfill their potential, developing large-area growth and understanding the properties of TMDCs have become crucial. Here, we have used molecular beam epitaxy (MBE) to grow atomically thin MoSe on GaAs(111)B.

View Article and Find Full Text PDF
Article Synopsis
  • The band structure of transition metal dichalcogenides (TMDCs) can be utilized to create valleytronic devices that depend on the valley degree of freedom.
  • To achieve valley polarization, controlling the charge density in different valleys is essential, which has been challenging without optical methods.
  • This study showcases successful spin injection from a ferromagnetic material into a WSe2 and MoS2 heterojunction, enabling control over valley polarization and the ability to emit circularly polarized light through external magnetic fields.
View Article and Find Full Text PDF

Two-dimensional semiconductors such as MoS2 are an emerging material family with wide-ranging potential applications in electronics, optoelectronics, and energy harvesting. Large-area growth methods are needed to open the way to applications. Control over lattice orientation during growth remains a challenge.

View Article and Find Full Text PDF

Two-dimensional (2D) materials are a new type of materials under intense study because of their interesting physical properties and wide range of potential applications from nanoelectronics to sensing and photonics. Monolayers of semiconducting transition metal dichalcogenides MoS2 or WSe2 have been proposed as promising channel materials for field-effect transistors. Their high mechanical flexibility, stability, and quality coupled with potentially inexpensive production methods offer potential advantages compared to organic and crystalline bulk semiconductors.

View Article and Find Full Text PDF

Two-dimensional materials are an emerging class of new materials with a wide range of electrical properties and potential practical applications. Although graphene is the most well-studied two-dimensional material, single layers of other materials, such as insulating BN (ref. 2) and semiconducting MoS2 (refs 3, 4) or WSe2 (refs 5, 6), are gaining increasing attention as promising gate insulators and channel materials for field-effect transistors.

View Article and Find Full Text PDF