Background: Polyomavirus-associated nephropathy (PVAN) after BK virus reactivation in kidney transplant recipients (KTR) can compromise graft survival. Lowering immunosuppression is the only established approach to prevent or treat PVAN but nonspecifically increasing host immune competence also augments rejection risk. Ex vivo T cell stimulation/expansion offers the possibility to generate BK-specific T cell lines for adoptive immunotherapy.
View Article and Find Full Text PDFBK polyomavirus is ubiquitous, with a seropositivity rate of over 75% in the adult population. Primary infection is thought to occur in the respiratory tract, but asymptomatic BK virus latency is established in the urothelium. In immunocompromised host, the virus can reactivate but rarely compromises kidney function except in renal grafts, where it causes a tubulointerstitial inflammatory response similar to acute rejection.
View Article and Find Full Text PDFBackground: Adoptive transfer of minor histocompatibility antigen (MiHA)-specific T cells is a promising therapy for patients with hematological cancers. However, the efficacy of the transferred cells is hampered by the acquisition of terminal effector differentiation and exhaustion features during expansion in vitro thus preventing their function and persistence in vivo. Yet, the factors that induce T-cell differentiation and functional impairment in culture remain poorly defined and are likely to vary depending on the method used for expansion.
View Article and Find Full Text PDFBackground Aims: The adoptive transfer of ex vivo-expanded Epstein-Barr virus (EBV)-specific T-cell lines is an attractive strategy to treat EBV-related neoplasms. Current evidence suggests that for adoptive immunotherapy in general, clinical responses are superior if the transferred cells have not reached a late or terminal effector differentiation phenotype before infusion. The cytokine interleukin (IL)-21 has shown great promise at limiting late T-cell differentiation in vitro, but this remains to be demonstrated in anti-viral T-cell lines.
View Article and Find Full Text PDFLactose-derived catanionic vesicles offer unique opportunities to overcome cellular barriers. These potential nanovectors, very easy to formulate as drug delivery systems, are able to encapsulate drugs of various hydrophilicity. This article highlights versatile interaction mechanisms between these catanionic vesicles, labeled with hydrophilic and amphiphilic fluorescent probes, and a mammalian cell line, Chinese Hamster Ovary.
View Article and Find Full Text PDFBackground: Adipose tissue is widely used in plastic surgery. The main obstacle is that it can be used only immediately after liposuction, while reconstruction often requires several procedures to achieve optimal results. This study aimed to develop a cryopreservation protocol directly applicable to clinical situations, allowing repetitive procedures without multiple tissue harvests.
View Article and Find Full Text PDFBackground: Ineffective drug delivery is a vast problem of anticancer therapies. The aim of this study was to investigate the possibility of enhancement of cyanines transport through the cell membrane by electroporation and to evaluate a photodynamic activity of these compounds.
Methods: We evaluated in vitro the effectiveness of photodynamic reaction with cyanines on breast adenocarcinoma cells (MCF-7/WT) and normal Chinese hamster ovary cells (CHO) lacking voltage-dependent ion channels, alone and combined with electropermeabilization.
Low biological activity and inefficient targeted delivery in vivo have hindered RNA interference (RNAi)-based therapy from realising its full clinical potential. To overcome these hurdles, progresses have been made to develop new technologies optimizing oligonucleotides chemistry on one hand and achieving its effective delivery on the other hand. In this report, we achieved, by using the electropulsation technique (EP), efficient cellular delivery of chemically-modified oligonucleotide: The locked nucleic acid (LNA)/DNA oligomer.
View Article and Find Full Text PDFThe influence of electroporation on the Photofrin uptake and distribution was evaluated in the breast adenocarcinoma cells (MCF-7) and normal Chinese hamster ovary cells (CHO) lacking voltage-dependent channels in vitro. Photofrin was used at a concentration of 5 and 25 μM. The uptake of Photofrin was assessed using flow cytometry and fluorescence microscopy methods.
View Article and Find Full Text PDFElectropermeabilization is a biological physical process in response to the presence of an applied electric field that is used for the transfer of hydrophilic molecules such as anticancer drugs or DNA across the plasma membranes of living cells. The molecular processes that support the transfer are poorly known. The aim of our study was to investigate the effect of high-voltage and low-voltage (HVLV) pulses in vitro with different orientations on cell permeabilization, viability and gene transfection.
View Article and Find Full Text PDFMicro-RNAs (miRNAs) are small regulatory RNAs that play an important role in disease development and progression and therefore represent a potential new class of therapeutic targets. However, an effective and safe clinical approach for miRNA inhibition remains elusive, primarily due to the lack of effective delivery methods. We proposed to inhibit miRNA by electrotransferring an antisense DNA oligomer containing locked nucleic acids (LNAs) (LNA/DNA oligomer).
View Article and Find Full Text PDFA major issue for successful human gene therapy or genetic vaccination is a safe high-transgene expression level. Plasmid-based (non-viral) physical methods of gene transfer offered attracting approaches but their low efficiencies have limited their use in human pre-clinical trials. One of the limits appears to be the size of the plasmid that must be transferred across the cell membrane to the nucleus for its processing.
View Article and Find Full Text PDFHuman fibrinogen 1 is homodimeric with respect to its gamma chains (gammaA-gammaA'), whereas fibrinogen 2 molecules each contain one gammaA (gammaA1-411V) and one gamma' chain, which differ by containing a unique C-terminal sequence from gamma'408 to 427L that binds thrombin and factor XIII. We investigated the structural and functional features of these fibrins and made several observations. First, thrombin-treated fibrinogen 2 produced finer, more branched clot networks than did fibrin 1.
View Article and Find Full Text PDFFibrinogen Haifa is a congenital heterozygous fibrinogen variant (gamma 275 Arg----His) characterized by prolonged thrombin and reptilase times and normal fibrinopeptide (FPA, FPB) release. We compared the polymerization rate (by turbidity measurements at 350 nm) and the ultrastructure of Haifa alpha-, beta-, and alpha, beta-fibrin with that of normal. Haifa alpha, beta-fibrin polymerized less rapidly than did normal and formed a highly branched matrix with a smaller mean fiber diameter; this network closely resembled that of normal alpha, beta-fibrin with EDTA added.
View Article and Find Full Text PDFRev Epidemiol Med Soc Sante Publique
July 1975
Bull Soc Pathol Exot Filiales
August 1971
Bull Soc Pathol Exot Filiales
February 1968
Bull Soc Pathol Exot Filiales
December 1996
Bull Soc Pathol Exot Filiales
July 2000
Ann Inst Pasteur (Paris)
September 1958