In analyzing the neural correlates of naturalistic and unstructured behaviors, features of neural activity that are ignored in a trial-based experimental paradigm can be more fully studied and investigated. Here, we analyze neural activity from two patients using electrocorticography (ECoG) and stereo-electroencephalography (sEEG) recordings, and reveal that multiple neural signal characteristics exist that discriminate between unstructured and naturalistic behavioral states such as "engaging in dialogue" and "using electronics". Using the high gamma amplitude as an estimate of neuronal firing rate, we demonstrate that behavioral states in a naturalistic setting are discriminable based on long-term mean shifts, variance shifts, and differences in the specific neural activity's covariance structure.
View Article and Find Full Text PDFObjective: Current brain-computer interface (BCI) studies demonstrate the potential to decode neural signals obtained from structured and trial-based tasks to drive actuators with high performance within the context of these tasks. Ideally, to maximize utility, such systems will be applied to a wide range of behavioral settings or contexts. Thus, we explore the potential to augment such systems with the ability to decode abstract behavioral contextual states from neural activity.
View Article and Find Full Text PDF