NadA is a multifunctional enzyme that condenses dihydroxyacetone phosphate (DHAP) with iminoaspartate (IA) to generate quinolinic acid (QA), the universal precursor of the nicotinamide adenine dinucleotide (NAD(P)) cofactor. Using X-ray crystallography, we have (i) characterized two of the reaction intermediates of QA synthesis using a "pH-shift" approach and a slowly reacting Thermotoga maritima NadA variant and (ii) observed the QA product, resulting from the degradation of an intermediate analogue, bound close to the entrance of a long tunnel leading to the solvent medium. We have also used molecular docking to propose a condensation mechanism between DHAP and IA based on two previously published Pyrococcus horikoshi NadA structures.
View Article and Find Full Text PDFRegiospecific dehydration of vicinal diols by enzymes is a difficult reaction that usually requires activation by dedicated organic cofactors. The enzymatic use of radical-based chemistry is an effective but challenging alternative as radical intermediates are difficult to control. Here we report the X-ray structure of the radical S-adenosyl-l-methionine (SAM) dehydratase AprD4 involved in the biosynthesis of the aminoglycoside (AG) antibiotic apramycin.
View Article and Find Full Text PDFNsrR from Streptomyces coelicolor (Sc) regulates the expression of three genes through the progressive degradation of its [4Fe-4S] cluster on nitric oxide (NO) exposure. We report the 1.95 Å resolution crystal structure of dimeric holo-ScNsrR and show that the cluster is coordinated by the three invariant Cys residues from one monomer and, unexpectedly, Asp8 from the other.
View Article and Find Full Text PDFThe enzyme NadA catalyzes the synthesis of quinolinic acid (QA), the precursor of the universal nicotinamide adenine dinucleotide (NAD) cofactor. Here, we report the crystal structures of complexes between the Thermotoga maritima (Tm) NadA K219R/Y107F variant and (i) the first intermediate (W) resulting from the condensation of dihydroxyacetone phosphate (DHAP) with iminoaspartate and (ii) the DHAP analogue and triose-phosphate isomerase inhibitor phosphoglycolohydroxamate (PGH). In addition, using the TmNadA K219R/Y21F variant, we have reacted substrates and obtained a crystalline complex between this protein and the QA product.
View Article and Find Full Text PDFThe structure of the dimeric holo-fumarate and nitrate reduction regulator (FNR) from Aliivibrio fischeri has been solved at 2.65 Å resolution. FNR globally controls the transition between anaerobic and aerobic respiration in facultative anaerobes through the assembly/degradation of its oxygen-sensitive [4Fe-4S] cluster.
View Article and Find Full Text PDF