Publications by authors named "Ori Palevitch"

The endocrine regulation of vertebrate reproduction is achieved by the coordinated actions of several peptide neurohormones, tachykinin among them. To study the evolutionary conservation and physiological functions of neurokinin B (NKB), we identified tachykinin (tac) and tac receptor (NKBR) genes from many fish species, and cloned two cDNA forms from zebrafish. Phylogenetic analysis showed that piscine Tac3s and mammalian neurokinin genes arise from one lineage.

View Article and Find Full Text PDF

Hypophysiotropic GnRH neurons are located in the preoptic area and ventral hypothalamus of sexually mature vertebrates. In several species, the embryonic origin of hypophysiotropic GnRH neurons remains unclear. Using the Tg(GnRH3:EGFP) zebrafish line, in which GnRH3 neurons express EGFP, GnRH3 neurons in the olfactory region were specifically and individually ablated during early development using laser pulses.

View Article and Find Full Text PDF

Hypothalamic gonadotropin-releasing hormone (GnRH) neurons control pituitary gonadotropin secretion and gametogenesis. In the course of development, these neurons migrate from the olfactory placode to the hypothalamus. The precise molecular mechanism of this neuronal migration is unclear.

View Article and Find Full Text PDF

Development and function of the forebrain gonadotropin-releasing hormone (GnRH) neuronal system has long been the focus of study in various vertebrate species. This system is crucial for reproduction and an important model for studying tangential neuronal migration. In addition, the finding that multiple forms of GnRH exist in the CNS as well as in non-CNS tissues, coupled with the fact that GnRH fibers project to many CNS regions, implies that GnRH has a variety of functions in addition to its classic reproductive role.

View Article and Find Full Text PDF

The initiation of puberty and the functioning of the reproductive system depend on proper development of the hypophysiotropic gonadotropin-releasing hormone (GnRH) system. One critical step in this process is the embryonic migration of GnRH neurons from the olfactory area to the hypothalamus. Using a transgenic zebrafish model, Tg(gnrh3:EGFP), in which GnRH3 neurons and axons are fluorescently labeled, we investigated whether zebrafish NELF is essential for the development of GnRH3 neurons.

View Article and Find Full Text PDF

The ontogeny of two gonadotropin-releasing-hormone (GnRH) systems, salmon GnRH (sGnRH) and chicken GnRH-II (cGnRH-II), was investigated in zebrafish (Danio rerio). In situ hybridization (ISH) first detected sGnRH mRNA-expressing cells at 1 day post-fertilization (pf) anterior to the developing olfactory organs. Subsequently, cells were seen along the ventral olfactory organs and the olfactory bulbs, reaching the terminal nerve (TN) ganglion at 5-6 days pf.

View Article and Find Full Text PDF