Metal nanoparticle arrays are excellent candidates for a variety of applications due to the versatility of their morphology and structure at the nanoscale. Bottom-up self-assembly of metal nanoparticles provides an important complementary alternative to the traditional top-down lithography method and makes it possible to assemble structures with higher-order complexity, for example, nanospheres, nanocubes, and core-shell nanostructures. Here we present a mechanism study of the self-assembly process of 1-D noble metal nanoparticles arrays, composed of Au, Ag, and AuAg alloy nanoparticles.
View Article and Find Full Text PDFAtom-probe tomography (APT) is a powerful method for characterization of nanomaterials due to its atomic-ppm level detection limit and Angstrom spatial resolution. Sample preparation for nanomaterials is, however, challenging because of their small dimensions and complicated geometries. Nanowires, with their high geometrical aspect ratio and nanowire length, 10 to 100 times their typical diameters, are highly suitable specimens for APT analyses, which can be transferred to silicon microposts using a nanomanipulator for direct APT measurements.
View Article and Find Full Text PDFThe development of new doping methods extending beyond the traditional and well-established techniques is desired to match the rapid advances made in semiconductor (SC)-processing methods and nanostructure synthesis in numerous emerging applications, including the doping of 3D architectures. To address this, monolayer doping (MLD) and monolayer contact doping methods have been introduced recently. The MLD methods enable separation of the doping process of nanostructures from the synthesis step; hence, it is termed ex situ doping.
View Article and Find Full Text PDFDopants play a critical role in modulating the electric properties of semiconducting materials, ranging from bulk to nanoscale semiconductors, nanowires, and quantum dots. The application of traditional doping methods developed for bulk materials involves additional considerations for nanoscale semiconductors because of the influence of surfaces and stochastic fluctuations, which may become significant at the nanometer-scale level. Monolayer doping is an ex situ doping method that permits the post growth doping of nanowires.
View Article and Find Full Text PDFWe present a synthetic strategy that takes advantage of the inherent asymmetry exhibited by semiconductor nanowires prepared by Au-catalyzed chemical vapor deposition (CVD). The metal-semiconductor junction is used for activating etch, deposition, and modification steps localized to the tip area using a wet-chemistry approach. The hybrid nanostructures obtained for the coinage metals Cu, Ag, and Au resemble the morphology of grass flowers, termed here Nanofloret hybrid nanostructures consisting of a high aspect ratio SiGe nanowire (NW) with a metallic nanoshell cap.
View Article and Find Full Text PDFThe bottom-up synthesis of nanoscale building blocks is a versatile approach for the formation of a vast array of materials with controlled structures and compositions. This approach is one of the main driving forces for the immense progress in materials science and nanotechnology witnessed over the past few decades. Despite the overwhelming advances in the bottom-up synthesis of nanoscale building blocks and the fine control of accessible compositions and structures, certain aspects are still lacking.
View Article and Find Full Text PDFTailor-made metal oxide (MO) thin films with controlled compositions, electronic structures, and architectures are obtained via molecular layer deposition (MLD) and solution treatment. Step-wise formation of permeable hybrid films by MLD followed by chemical modification in solution benefits from the versatility of gas phase reactivity on surfaces while maintaining flexibility which is more common at the liquid phase.
View Article and Find Full Text PDFMonolayer Contact Doping (MLCD) is a simple method for doping of surfaces and nanostructures(1). MLCD results in the formation of highly controlled, ultra shallow and sharp doping profiles at the nanometer scale. In MLCD process the dopant source is a monolayer containing dopant atoms.
View Article and Find Full Text PDFContact doping method for the controlled surface doping of silicon wafers and nanometer scale structures is presented. The method, monolayer contact doping (MLCD), utilizes the formation of a dopant-containing monolayer on a donor substrate that is brought to contact and annealed with the interface or structure intended for doping. A unique feature of the MLCD method is that the monolayer used for doping is formed on a separate substrate (termed donor substrate), which is distinct from the interface intended for doping (termed acceptor substrate).
View Article and Find Full Text PDFWe present the transformation of organic-inorganic hybrid titanicone films formed by TiCl(4) as metal precursor and ethylene glycol (EG) using solvent-free MLD to highly active photocatalytic films. The photocatalytic activities of the films were investigated using hydroxyl-functionalized porphyrin as a spectroscopic marker. TEM imaging and electron diffraction, XPS, UV-vis spectroscopy, and spectroscsopic ellipsometry were employed for structural and composition analyses of the films.
View Article and Find Full Text PDF