Combustion chamber deposits adversely affect the operating performance of gas engines. In this study, the elemental composition of deposit samples collected from the inner surface of combustion chambers in gas engines across three different facilities was examined using various methods. The proportional changes in metal oxides along the internal cross-sectional surfaces of the deposits were examined to depict the deposit formation process from beginning to end.
View Article and Find Full Text PDFThe combustion chamber deposit (CCD) is a major problem for the gas engines that formed accumulating of the metal oxides during the oxidation of trace compounds in the landfill gas (LFG). Therefore, the LFG was purified with activated carbon (AC) before in use to reduce deposit formation in gas engines. The AC treatment demonstrated the high removal capacity by reducing to below 1 % of the mass ratios of Si and Ca in the deposit.
View Article and Find Full Text PDFThe authors would like to call the reader's attention to the fact that unfortunately Orhan Sevimoglu's affiliation was wrong in the original publication.
View Article and Find Full Text PDFCompositions of deposits forming on engines parts operated with landfill gas (LFG) were analyzed. The deposit compositions were compared before and after the installation of activated carbon system for treatment of LFG. Deposits forming on the spark plugs had significantly higher levels of calcium, chromium, and nickel in comparison to those forming on the engine heads.
View Article and Find Full Text PDFPerformances of gas engines operated with landfill gas (LFG) are affected by the impurities in the LFG, reducing the economic viability of energy recovery. The purpose of this study was to characterize the trace compounds in the LFG at the Odayeri Landfill, Istanbul, Turkey which is used for energy recovery. Composite gas samples were collected and analyzed for trace compounds (hydrocarbons, siloxanes, and volatile halogenated hydrocarbons) over a 3-year period.
View Article and Find Full Text PDFAs part of the Baltimore PM2.5 Supersite study, intensive three-hourly continuous PM2.5 sampling was conducted for nearly 4 weeks in summer of 2002 and as well in winter of 2002/2003.
View Article and Find Full Text PDF