Publications by authors named "Orhan Konak"

Wearable sensors have become increasingly popular in recent years, with technological advances leading to cheaper, more widely available, and smaller devices. As a result, there has been a growing interest in applying machine learning techniques for Human Activity Recognition (HAR) in healthcare. These techniques can improve patient care and treatment by accurately detecting and analyzing various activities and behaviors.

View Article and Find Full Text PDF

Sensor-based human activity recognition is becoming ever more prevalent. The increasing importance of distinguishing human movements, particularly in healthcare, coincides with the advent of increasingly compact sensors. A complex sequence of individual steps currently characterizes the activity recognition pipeline.

View Article and Find Full Text PDF

Accurate and comprehensive nursing documentation is essential to ensure quality patient care. To streamline this process, we present SONAR, a publicly available dataset of nursing activities recorded using inertial sensors in a nursing home. The dataset includes 14 sensor streams, such as acceleration and angular velocity, and 23 activities recorded by 14 caregivers using five sensors for 61.

View Article and Find Full Text PDF

Recent trends in ubiquitous computing have led to a proliferation of studies that focus on human activity recognition (HAR) utilizing inertial sensor data that consist of acceleration, orientation and angular velocity. However, the performances of such approaches are limited by the amount of annotated training data, especially in fields where annotating data is highly time-consuming and requires specialized professionals, such as in healthcare. In image classification, this limitation has been mitigated by powerful oversampling techniques such as data augmentation.

View Article and Find Full Text PDF