Publications by authors named "Orfanidou C"

In this study, samples collected from eight sweet cherry trees in northern Greece were analyzed by high-throughput sequencing for the presence of viruses. Bioinformatic analysis revealed the presence of divergent isolates of cherry latent virus 1 (CLV-1), a recently identified trichovirus in a sweet cherry accession imported into the USA from the Republic of Georgia. The complete genome sequences of seven CLV-1 isolates were determined, and phylogenetic analysis indicated that they belonged to a separate clade from the previously characterized Georgian isolate.

View Article and Find Full Text PDF

Plants have evolved well-tuned surveillance systems, including complex defence mechanisms, to constrain pathogens. TFs are master regulators of host molecular responses against plant pathogens. While PepMV constitutes a major threat to the global tomato production, there is still a lack of information on the key TFs that regulate host responses to this virus.

View Article and Find Full Text PDF

Rugose wood is one of the most important disease syndromes of grapevine, and it has been associated with at least three viruses: grapevine rupestris stem pitting-associated virus (GRSPaV), grapevine virus A (GVA), and grapevine virus B (GVB). All three viruses show a worldwide distribution pattern, and their genetic composition has been the focus of extensive research in past years. Despite their first record in Greece almost 20 years ago, there is a lack of knowledge on the distribution and genetic variability of their populations in Greek vineyards.

View Article and Find Full Text PDF

In the present study, we utilized high throughput and Sanger sequencing to determine the complete nucleotide sequence of a putative new ilarvirus species infecting sweet cherry, tentatively named prunus virus I (PrVI). The genome of PrVI is comprised of three RNA segments of 3474 nt (RNA1), 2911 nt (RNA2), and 2231 nt (RNA3) and features conserved motifs representative of the genus . BlastN analysis revealed 68.

View Article and Find Full Text PDF

In 2018 virus-like symptoms, typical of polerovirus infection were observed in several oilseed rape crops in northern Greece. In order to identify the etiological agent of these symptoms a polerovirus-generic RT-PCR assay was applied. Sequencing of the amplicons revealed the presence of virus isolates genetically close to turnip yellows virus (TuYV).

View Article and Find Full Text PDF

A new cytorhabdovirus was identified in zucchini (Cucurbita pepo) in Greece with the aid of high-throughput sequencing technology. The negative-sense, single-stranded genomic RNA of the new virus was determined and includes seven open reading frames in the order 3'-N-P-P3-P4-M-G-L-5' in the antigenomic orientation. Typical rhabdovirus-like particles were observed in infected leaf material.

View Article and Find Full Text PDF

Cucurbit chlorotic yellows virus (CCYV) and cucurbit yellow stunting disorder virus (CYSDV) are two closely related criniviruses that often coinfect cucurbits and are associated with cucurbit yellows disease. Both viruses are distributed worldwide and are transmitted in a semipersistent manner by the whitefly vectors MED or MEAM1. The major goal of this study was to provide insight into the interaction of CCYV and CYSDV in cucumber and to study the effect on transmission by MED.

View Article and Find Full Text PDF

RNA silencing is a major antiviral mechanism in plants, which is counteracted by virus-encoded proteins with silencing suppression activity. ORFs encoding putative silencing suppressor proteins that share no structural or sequence homology have been identified in the genomes of four criniviruses. In this study, we investigated the RNA silencing suppression activity of several proteins encoded by the RNA1 (RdRp, p22) and RNA2 (CP, CPm and p26) of cucurbit chlorotic yellows virus (CCYV) using co-agroinfiltration assays on Nicotiana benthamiana plants.

View Article and Find Full Text PDF

Cucurbit chlorotic yellows virus (CCYV) (genus Crinivirus, family Closteroviridae) is implicated in cucurbit yellows disease (CYV), causing typical interveinal yellowing symptoms in leaves, and is transmitted by Bemisia tabaci Mediterranean (MED) and Middle East-Asia Minor 1 (MEAM1). Due to its recent report in cucurbit crops in Greece, field surveys were conducted during 2011-2016 to determine the presence of the virus in symptomatic cucurbits and alternative hosts among arable weed species. Results indicated the restricted spread of the virus and identified 13 weed species as CCYV hosts for the first time.

View Article and Find Full Text PDF

The study of an emerging yellows disease of pepper crops (pepper yellows disease [PYD]) in Greece led to the identification of a polerovirus closely related to Pepper vein yellows virus (PeVYV). Recovery of its full genome sequence by next-generation sequencing of small interfering RNAs allowed its characterization as a new poleroviruses, which was provisionally named Pepper yellows virus (PeYV). Transmission experiments revealed its association with the disease.

View Article and Find Full Text PDF

Tomato chlorosis virus (ToCV) is implicated in tomato yellows disease in many countries worldwide. It has a wide host range, including cultivated species as well as arable weeds, and it is transmitted in a semipersistent manner by at least five whitefly species or biotypes of the genera Trialeurodes and Bemisia. ToCV is not seed transmitted and more than 36 weed species have been recorded as natural reservoirs, acting as unique sources both for the virus and its vectors when susceptible crops are harvested.

View Article and Find Full Text PDF

The phenomenon of resistive switching (RS), which was initially linked to non-volatile resistive memory applications, has recently also been associated with the concept of memristors, whose adjustable multilevel resistance characteristics open up unforeseen perspectives in cognitive computing. Herein, we demonstrate that the resistance states of Li(x)CoO2 thin film-based metal-insulator-metal (MIM) solid-state cells can be tuned by sequential programming voltage pulses, and that these resistance states are dramatically dependent on the pulses input rate, hence emulating biological synapse plasticity. In addition, we identify the underlying electrochemical processes of RS in our MIM cells, which also reveal a nanobattery-like behavior, leading to the generation of electrical signals that bring an unprecedented new dimension to the connection between memristors and neuromorphic systems.

View Article and Find Full Text PDF

During January 2014, open field and greenhouse tomato (Solanum lycopersicum L.) crops in the peripheral areas of Riyadh region (Al-Aflaj, Al-Kharj, Al-Waseel, and Al-Dalam), Saudi Arabia, were surveyed. In all surveyed tomato crops, yellowing symptoms were observed on the lower leaves, possibly infected by a whitefly transmitted crinivirus (family Closteroviridae) such as Tomato chlorosis virus (ToCV) and/or Tomato infectious chlorosis virus (TICV).

View Article and Find Full Text PDF

In 2011, an outbreak of a yellowing disease causing chlorosis and Interveinal chlorotic spots on lower leaves was observed in cucumber (Cucumis sativus) and melon (C. melo) plants in two greenhouses on the island of Rhodes, Greece. Similar symptoms were observed in 2012 in open field watermelon (Citrullus lanatus) plants in Rhodes and in November 2013 in a cucumber greenhouse in Tympaki, Crete.

View Article and Find Full Text PDF

Tomato chlorosis virus (ToCV) and Tomato infectious chlorosis virus (TICV) are two whitefly transmitted viruses which are classified in the genus Crinivirus of the family Closteroviridae. Both induce similar yellowing symptoms in tomato and are responsible for severe economic losses. ToCV is transmitted by Bemisia tabaci Gennadious, Trialeurodes vaporariorum Westwood and Trialeurodes abutilonea Haldeman, whereas TICV is transmitted only by T.

View Article and Find Full Text PDF

The secondary structure of Manduca sexta and Sesamia nonagrioides chorion proteins has been studied in intact chorions using laser-Raman and Fourier transform infra-red (FTIR) spectroscopy and in a solution containing extracted and reassembled chorion proteins using circular dichroism (CD) spectroscopy. Laser-Raman and IR spectra suggest the predominance of antiparallel beta-pleated sheet structure in intact chorion proteins of both Lepidoptera species. The bands at 1673, 1674 cm-1 (amide I) and 1234-1238 cm-1 (amide III) in the laser-Raman spectra can best be interpreted as resulting from abundant antiparallel beta-pleated sheet structure.

View Article and Find Full Text PDF

The fine structure of Manduca sexta and Sesamia nonagrioides chorion was investigated by scanning electron microscopy and freeze-fracturing. In both species the mature chorion exhibits a complex ultrastructure on its outer surface, with a large number of aeropyles forming polygonal arrays. The micropyle is surrounded by a rosette of approximately 80 follicular cell imprints.

View Article and Find Full Text PDF