Comput Biol Med
February 2022
The coronavirus disease 2019 (COVID-19) which is caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is consistently causing profound wounds in the global healthcare system due to its increased transmissibility. Currently, there is an urgent unmet need to identify the underlying dynamic associations among COVID-19 patients and distinguish patient subgroups with common clinical profiles towards the development of robust classifiers for ICU admission and mortality. To address this need, we propose a four step pipeline which: (i) enhances the quality of multiple timeseries clinical data through an automated data curation workflow, (ii) deploys Dynamic Bayesian Networks (DBNs) for the detection of features with increased connectivity based on dynamic association analysis across multiple points, (iii) utilizes Self Organizing Maps (SOMs) and trajectory analysis for the early identification of COVID-19 patients with common clinical profiles, and (iv) trains robust multiple additive regression trees (MART) for ICU admission and mortality classification based on the extracted homogeneous clusters, to identify risk factors and biomarkers for disease progression.
View Article and Find Full Text PDF