Background And Objective: Systemic autoinflammatory diseases (SAIDs) are characterized by widespread inflammation, but for most of them there is a lack of specific biomarkers for accurate diagnosis. Although a number of machine learning algorithms have been used to analyze SAID datasets, aiding in the discovery of novel biomarkers, there is a growing recognition of the importance of SAID timeseries clustering, as it can capture the temporal dynamics of gene expression patterns.
Methodology: This paper proposes a novel clustering methodology to efficiently associate three-dimensional data.
Annu Int Conf IEEE Eng Med Biol Soc
July 2023
A preliminary analysis was conducted on data acquired from RNA sequencing and SomaScan platforms, for the classification of patients with Inflammation of Unknown Origin. To this end, a multimodal data integration approach was designed, by combining the two platforms, in order to assess the potentiality of learning estimators, using the differentially expressed features from the independent profiling experiments of both platforms. The classification framing was the differentiation of Inflammation of Unknown Origin patients against a multitude of Systemic Autoinflammatory disease patients.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2022
A meta-analysis study was conducted to compare high-throughput technologies in the classification of Adult-Onset Still's Disease patients, using differentially expressed genes from independent profiling experiments. We exploited two publicly available datasets from the Gene Expression Omnibus and performed a separate differential expression analysis on each dataset to extract statistically important genes. We then mapped the genes of the two datasets and subsequently we employed well-established machine learning algorithms to evaluate the denoted genes as candidate biomarkers.
View Article and Find Full Text PDF