Rare earth-based monopnictides are among the most intensively studied groups of materials in which extremely large magnetoresistance has been observed. This study explores magnetotransport properties of two representatives of this group, DyBi and HoBi. The extreme magnetoresistance is discovered in DyBi and confirmed in HoBi.
View Article and Find Full Text PDFMaterials capable of emitting ultraviolet (UV) radiation are sought for applications ranging from theranostics or photodynamic therapy to specific photocatalysis. The nanometer size of these materials, as well as excitation with near-infrared (NIR) light, is essential for many applications. Tetragonal tetrafluoride LiY(Gd)Fnanocrystalline host for up-converting Tm-Ybactivator-sensitizer pair is a promising candidate to achieve UV-vis up-converted radiation under NIR excitation, important for numerous photo-chemical and bio-medical applications.
View Article and Find Full Text PDFThe rare-earth monopnictide family is attracting an intense current interest driven by its unusual extreme magnetoresistance (XMR) property and the potential presence of topologically non-trivial surface states. The experimental observation of non-trivial surface states in this family of materials are not ubiquitous. Here, using high-resolution angle-resolved photoemission spectroscopy, magnetotransport, and parallel first-principles modeling, we examine the nature of electronic states in HoSb.
View Article and Find Full Text PDFThe prediction of non-trivial topological electronic states in half-Heusler compounds makes these materials good candidates for discovering new physics and devices as half-Heusler phases harbour a variety of electronic ground states, including superconductivity, antiferromagnetism, and heavy-fermion behaviour. Here, we report a systematic studies of electronic properties of a superconducting half-Heusler compound YPtBi, in its normal state, investigated using angle-resolved photoemission spectroscopy. Our data reveal the presence of a Dirac state at the [Formula: see text] point of the Brillouin zone at 500 meV below the Fermi level.
View Article and Find Full Text PDFPlatinum ditelluride has recently been characterized, based on angle-resolved photoemission spectroscopy data and electronic band structure calculations, as a possible representative of type-II Dirac semimetals. Here, we report on the magnetotransport behavior (electrical resistivity, Hall effect) in this compound, investigated on high-quality single-crystalline specimens. The magnetoresistance (MR) of PtTe is large (over 3000% at T = 1.
View Article and Find Full Text PDFSeveral rare-earth monopnictides were shown to exhibit extreme magnetoresistance and field-induced low-temperature plateau of electrical resistivity. These features are also hallmarks of topological semimetals, thus the family is intensively explored with respect to magneto-transport properties and possible hosting Dirac fermion states. We report a comprehensive investigation of Fermi surface and electrical transport properties of LuSb, another representative of this family.
View Article and Find Full Text PDFVery strong magnetoresistance and a resistivity plateau impeding low temperature divergence due to insulating bulk are hallmarks of topological insulators and are also present in topological semimetals where the plateau is induced by magnetic field, when time-reversal symmetry (protecting surface states in topological insulators) is broken. Similar features were observed in a simple rock-salt-structure LaSb, leading to a suggestion of the possible non-trivial topology of 2D states in this compound. We show that its sister compound YSb is also characterized by giant magnetoresistance exceeding one thousand percent and low-temperature plateau of resistivity.
View Article and Find Full Text PDFWe observed the coexistence of superconductivity and antiferromagnetic order in the single-crystalline ternary pnictide HoPdBi, a plausible topological semimetal. The compound orders antiferromagnetically at TN = 1.9 K and exhibits superconductivity below Tc = 0.
View Article and Find Full Text PDFWe present electronic transport and magnetic properties of single crystals of semimetallic half-Heusler phase LuPdBi, having theoretically predicted band inversion requisite for nontrivial topological properties. The compound exhibits superconductivity below a critical temperature Tc = 1.8 K, with a zero-temperature upper critical field Bc2 ≈ 2.
View Article and Find Full Text PDF