Inorganic thermochromic materials exhibit a tunable color gamut and a wide chromatic temperature range, indicating their potential for intelligent adaptive applications in thermal warning, temperature indication, thermal regulation, and interactive light-to-thermal energy conversion. However, most metal-oxide-based thermochromic materials show weak chromaticity adaption with the change of temperature, which needs further understanding of the microscopic principle to clarify the potential route to improve the contrast and identifiability for fabricating better thermochromic materials. Using perovskite-structure (AMO) alkaline earth metal stannate (BaSrSnO, 0.
View Article and Find Full Text PDFSoft actuators inspired by the movement of organisms have attracted extensive attention in the fields of soft robotics, electronic skin, artificial intelligence, and healthcare due to their excellent adaptability and operational safety. Liquid crystal elastomer fiber actuators (LCEFAs) are considered as one of the most promising soft actuators since they can provide reversible linear motion and are easily integrated or woven into complex structures to perform pre-programmed movements such as stretching, rotating, bending, and expanding. The research on LCEFAs mainly focuses on controllable preparation, structural design, and functional applications.
View Article and Find Full Text PDF