Publications by authors named "Orenstein M"

Acute appendicitis (AA) in pediatric patients with acute leukemia mandates prompt treatment. Diagnosis presents challenges, relying on clinical and radiological assessments, often leading to treatment delays that may disrupt leukemia management. Our study on 14 such cases underscores the pivotal role of swift intervention.

View Article and Find Full Text PDF

Chip-scale light-atom interactions are vital for the miniaturization of atomic sensing systems, including clocks, magnetometers, gyroscopes and more. Combining as many photonic elements as possible onto a photonic chip greatly reduces size and power consumption, where the critical elements are those interfacing between the 2D circuit and the 3D vapor cell. We introduce a new design method for large scale two-dimensional converter structures, enabling out-coupling of radiation from the photonic chip into the atomic medium.

View Article and Find Full Text PDF

Understanding the frequency spectrum of the optical force is important for controlling and manipulating micro- and nano-scale objects using light. Spectral resonances of these objects can significantly influence the optical force spectrum. In this paper, we develop a theoretical formalism based on the temporal coupled-mode theory that analytically describes the lineshapes of force spectra and their dependencies on resonant scatterers for arbitrary incident wavefronts.

View Article and Find Full Text PDF

Scattering thresholds and their associated spectral square root branch points are ubiquitous in photonics. In this Letter, we show that the scattering matrix has a simple universal behavior near scattering thresholds. We use unitarity, reciprocity, and time-reversal symmetry to construct a two-parameter model for a two-port scattering matrix near a threshold.

View Article and Find Full Text PDF

Orbital angular momentum of light is a core feature in photonics. Its confinement to surfaces using plasmonics has unlocked many phenomena and potential applications. Here, we introduce the reflection from structural boundaries as a new degree of freedom to generate and control plasmonic orbital angular momentum.

View Article and Find Full Text PDF

Direct current (DC) converters play an essential role in electronic circuits. Conventional high-efficiency DC voltage converters, especially step-up type, rely on switching operation, where energy is periodically stored within and released from inductors and/or capacitors connected in a variety of circuit topologies. Since these energy storage components, especially inductors, are fundamentally difficult to scale down, miniaturization of switching converters proves challenging.

View Article and Find Full Text PDF

We propose the generation of 3D linear light bullets propagating in free space using a single passive nonlocal optical surface. The nonlocal nanophotonics can generate space-time coupling without any need for bulky pulse-shaping and spatial modulation techniques. Our approach provides simultaneous control of various properties of the light bullets, including the external properties such as the group velocity and the propagation distance, and internal degrees of freedom such as the spin angular momentum and the orbital angular momentum.

View Article and Find Full Text PDF

Surface plasmon polaritons carrying orbital angular momentum are of great fundamental and applied interest. However, common approaches for their generation are restricted to having a weak dependence on the properties of the plasmon-generating illumination, providing a limited degree of control over the amount of delivered orbital angular momentum. Here we experimentally show that by tailoring local and global geometries of vortex generators, a change in helicity of light imposes arbitrary large switching in the delivered plasmonic angular momentum.

View Article and Find Full Text PDF

We analyze scattering properties of twisted bilayer photonic crystal slabs through a high-dimensional plane wave expansion method. The method is applicable for arbitrary twist angles and does not suffer from the limitations of the commonly used supercell approximation. We show strongly tunable resonance properties of this system which can be accounted for semianalytically from a correspondence relation to a simpler structure.

View Article and Find Full Text PDF

Optical computing holds significant promise of information processing with ultrahigh speed and low power consumption. Recent developments in nanophotonic structures have generated renewed interests due to the prospects of performing analog optical computing with compact devices. As one prominent example, spatial differentiation has been demonstrated with nanophotonic structures and directly applied for edge detection in image processing.

View Article and Find Full Text PDF

We present a systematic optimization of nighttime thermoelectric power generation system utilizing radiative cooling. We show that an electrical power density >2 W/m, two orders of magnitude higher than the previously reported experimental result, is achievable using existing technologies. This system combines radiative cooling and thermoelectric power generation and operates at night when solar energy harvesting is unavailable.

View Article and Find Full Text PDF

We demonstrate a non-Hermitian topological effect that is characterized by having complex eigenvalues only in the edge states of a topological material, despite the fact that the material is completely uniform. Such an effect can be constructed in any topological structure formed by two gapped subsystems, e.g.

View Article and Find Full Text PDF

We introduce and demonstrate a new approach for nitrogen-vacancy (NV) patterning in diamond, achieving a deterministic, nanometer-thin, and dense delta-doped layer of negatively charged NV centers in diamond. We employed a pure nitridation stage using microwave plasma and a subsequent diamond overgrowth. We present the highest reported nitrogen concentration in a delta-doped layer (1.

View Article and Find Full Text PDF

Semiconductor nanostructures are desirable for electronics, photonics, quantum circuitry, and energy conversion applications as well as for fundamental science. In photonics, optical nanoantennas mediate the large size difference between photons and semiconductor nanoemitters or detectors and hence are instrumental for exhibiting high efficiency. In this work we present epitaxially grown InP nanoflags as optically active nanostructures encapsulating the desired characteristics of a photonic emitter and an efficient epitaxial nanoantenna.

View Article and Find Full Text PDF

We experimentally and theoretically visualize the propagation of short-range surface plasmon polaritons using atomically flat single-crystalline gold platelets on silicon substrates. We study their excitation and subfemtosecond dynamics via normal-incidence two-photon photoemission electron microscopy. By milling a plasmonic disk and grating structure into a single-crystalline gold platelet, we observe nanofocusing of the short-range surface plasmon polariton.

View Article and Find Full Text PDF

The negatively charged nitrogen-vacancy (NV) color center in diamond is an important atom-like system for emergent quantum technologies and sensing at room temperature. The light emission rates and collection efficiency are key issues toward realizing NV-based quantum devices. In that aspect, we propose and experimentally demonstrate a selective and spatially localized method for enhancing the light-matter interaction of shallow NV centers in bulk diamonds.

View Article and Find Full Text PDF

The ability of light to carry and deliver orbital angular momentum (OAM) in the form of optical vortices has attracted much interest. The physical properties of light with a helical wavefront can be confined onto two-dimensional surfaces with subwavelength dimensions in the form of plasmonic vortices, opening avenues for thus far unknown light-matter interactions. Because of their extreme rotational velocity, the ultrafast dynamics of such vortices remained unexplored.

View Article and Find Full Text PDF

Quasi-two-dimensional semiconductor materials are desirable for electronic, photonic, and energy conversion applications as well as fundamental science. We report on the synthesis of indium phosphide flag-like nanostructures by epitaxial growth on a nanowire template at 95% yield. The technique is based on in situ catalyst unpinning from the top of the nanowire and its induced migration along the nanowire sidewall.

View Article and Find Full Text PDF

We present an experimental study of Hetero-Chiral (HC) plasmonic lenses, comprised of constituents with opposite chirality, demonstrating linearly dichroic focusing. The lenses focus only light with a specific linear polarization and result in a dark focal spot for the orthogonal polarization state. We introduce the design concepts and quantitatively compare several members of the HC family, deriving necessary conditions for linear dichroism and several comparative engineering parameters.

View Article and Find Full Text PDF

Topological insulators (TI) are new phases of matter with topologically protected surface states (SS) possessing novel physical properties such as spin-momentum locking. Coupling optical angular momentum to the SS is of interest for both fundamental understanding and applications in future spintronic devices. However, due to the nanoscale thickness of the surface states, the light matter interaction is dominated by the bulk.

View Article and Find Full Text PDF

Loss is known to be detrimental for achieving perfect focusing with the passive perfect lens designs suggested thus far, and it is believed to pose a fundamental barrier. We show that perfect lensing can be achieved with actual lossy left-handed metamaterials, without a need for gain or nonlinearity. The proposed loss-immune perfect lens is composed of a single interface between a conventional dielectric material on the source side and a lossy left-handed material on the image side.

View Article and Find Full Text PDF

We designed and realized a metasurface (manipulating the local geometry) spiral (manipulating the global geometry) plasmonic lens, which fundamentally overcomes the multiple efficiency and functionality challenges of conventional in-plane plasmonic lenses. The combination of spirality and metasurface achieves much more efficient and uniform linear-polarization-independent plasmonic focusing. As for functionality, under matched circularly polarized illumination the lens directs all of the power coupled to surface plasmon polaritons (SPPs) into the focal spot, while the orthogonal polarization excites only diverging SPPs that do not penetrate the interior of the lens, achieving 2 orders of magnitude intensity contrast throughout the entire area of the lens.

View Article and Find Full Text PDF

We have designed, fabricated and measured the first plasmon-assisted normal incidence GaN/AlN quantum cascade detector (QCD) making use of the surface plasmon resonance of a two-dimensional nanohole Au array integrated on top of the detector absorption region. The spectral response of the detector at room temperature is peaked at the plasmon resonance of 1.82 μm.

View Article and Find Full Text PDF

We present a direct measurement of short-wavelength plasmons focused into a sub-100 nm spot in homogeneous (translation invariant) 2D space. The short-wavelength (SW) surface plasmon polaritons (SPP) are achieved in metal-insulator-insulator (MII) platform consisting of silver, silicon nitride, and air. This platform is homogeneous in two spatial directions and supports SPP at wavelength more than two times shorter than that in free space yet interacts with the outer world through the evanescent tail in air.

View Article and Find Full Text PDF