Publications by authors named "Orend G"

Rheumatoid arthritis (RA) is a common autoimmune disorder characterized by exacerbated joint inflammation. Despite the well-documented accumulation of the serine protease granzyme B (GzmB) in RA patient biospecimens, little is understood pertaining to its role in pathobiology. In the present study, tenascin-C (TNC) - a large, pro-inflammatory extracellular matrix glycoprotein - was identified as a substrate for GzmB in RA.

View Article and Find Full Text PDF
Article Synopsis
  • The study looked at a special peptide called MAREMO that can help fight breast cancer by blocking a harmful molecule called tenascin-C.*
  • By doing this, it helps the body’s immune system work better against the tumor and stops the cancer from spreading.*
  • The MAREMO peptide also helps make the tumor environment less supportive for cancer growth by weakening certain cells and improving blood flow.*
View Article and Find Full Text PDF

Tenascin-C (TNC) is a matricellular and multimodular glycoprotein highly expressed under pathological conditions, especially in cancer and chronic inflammatory diseases. Since a long time TNC is considered as a promising target for diagnostic and therapeutic approaches in anti-cancer treatments and was already extensively targeted in clinical trials on cancer patients. This review provides an overview of the current most advanced strategies used for TNC detection and anti-TNC theranostic approaches including some advanced clinical strategies.

View Article and Find Full Text PDF

Bidirectional dialogue between cellular and non-cellular components of the tumor microenvironment (TME) drives cancer survival. In the extracellular space, combinations of matrix molecules and soluble mediators provide external cues that dictate the behavior of TME resident cells. Often studied in isolation, integrated cues from complex tissue microenvironments likely function more cohesively.

View Article and Find Full Text PDF

Controlled tissue growth is essential for multicellular life and requires tight spatiotemporal control over cell proliferation and differentiation until reaching homeostasis. As cells synthesize and remodel extracellular matrix, tissue growth processes can only be understood if the reciprocal feedback between cells and their environment is revealed. Using de novo-grown microtissues, we identified crucial actors of the mechanoregulated events, which iteratively orchestrate a sharp transition from tissue growth to maturation, requiring a myofibroblast-to-fibroblast transition.

View Article and Find Full Text PDF

Tracks rich in matrix and cells, as described in several cancer types, have immunosuppressive functions and separate tumor nests and stroma, yet their origin is unknown. Immunostainings of cryosections from mouse breast tumors show that these tracks are bordered by an endothelial-like basement membrane, filled with fibers of collagen adjacent to tenascin-C (TNC) and low-tension fibronectin (Fn) fibers. While present in early-stage tumors and maturing with time, tracks still form under TNC KO conditions, however, host (not tumor cell)-derived TNC is important for track maturation.

View Article and Find Full Text PDF
Article Synopsis
  • - Age-related diseases pose significant challenges in developed countries, prompting the need for pharmaceutical solutions and suitable animal models to study aging processes and evaluate potential treatments.
  • - Current mouse models fail to consistently replicate human age-related diseases such as osteoporosis, cognitive issues, or sarcopenia, which complicates research in this area.
  • - The study highlights Dicer-deficient mice that demonstrate premature aging symptoms across various organs, revealing important pathways through the molecular analysis of adipose tissue that could offer insights for reversing these aging effects.
View Article and Find Full Text PDF

The roles of the extracellular matrix molecule tenascin-C (TNC) in health and disease have been extensively reviewed since its discovery over 40 years ago. Here, we will describe recent insights into the roles of TNC in tumorigenesis, angiogenesis, immunity and metastasis. In addition to high levels of expression in tumors, and during chronic inflammation, and bacterial and viral infection, TNC is also expressed in lymphoid organs.

View Article and Find Full Text PDF

The extracellular matrix molecule Tenascin-C (TNC) promotes cancer and chronic inflammation by multiple mechanisms. Recently, TNC was shown to promote an immune suppressive tumor microenvironment (TME) through binding soluble chemoattracting factors, thus retaining leukocytes in the stroma. TNC also binds to fibronectin (FN) and other molecules, raising the question of a potential common TNC binding mechanism.

View Article and Find Full Text PDF

Anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides (AAV) are severe inflammatory disorders that often involve focal necrotizing glomerulonephritis (FNGN) and consequent glomerular scarring, interstitial fibrosis, and chronic kidney disease. Robust murine models of scarring in FNGN that may help to further our understanding of deleterious processes are still lacking. Here, we present a murine model of severe FNGN based on combined administration of antibodies against the glomerular basement membrane (GBM) and myeloperoxidase (MPO), and bacterial lipopolysaccharides (LPS), that recapitulates acute injury and was adapted to investigate subsequent glomerular and interstitial scarring.

View Article and Find Full Text PDF

Tenascin C (TNC) is an extracellular matrix protein with immunomodulatory properties that plays a major role during tissue injury and repair. TNC levels are increased in patients with pneumonia and pneumosepsis, and they are associated with worse outcomes. Methicillin-resistant Staphylococcus aureus (MRSA) is a Gram-positive bacterium that is a major causative pathogen in nosocomial pneumonia and a rising cause of community-acquired pneumonia.

View Article and Find Full Text PDF
Article Synopsis
  • Radiotherapy is a common treatment for oral squamous cell carcinomas (OSCC), but it can also contribute to tumor relapse due to an immune-suppressive tumor microenvironment (TME).
  • A new grafting model using a carcinogen-induced OSCC allows researchers to study the effects of radiotherapy on tumors while mirroring key features of human diseases, including mutations and immune cell infiltration.
  • Findings show that while radiotherapy kills some tumor cells, it leaves behind a TME rich in tenascin-C (TNC), indicating immune suppression; surprising results show that tumors in TNC knockout hosts have less immune suppression and more tumor regression.
View Article and Find Full Text PDF

Immune checkpoint therapy, where CD8 tumor infiltrating T lymphocytes (TIL) are reactivated, is a promising anti-cancer treatment approach, yet with low response rates. The extracellular matrix, in particular tenascin-C, may generate barriers for TIL. To investigate this possibility, we used a MMTV-NeuNT and syngeneic mammary gland grafting model derived thereof with engineered tenascin-C levels and observed accumulation of CD8 TIL in tenascin-C-rich stroma.

View Article and Find Full Text PDF

Tenascin-C plays important roles in immunity. Toll-like receptor 4, integrin α9β1 and chemokines have already been identified as key players in executing the immune regulatory functions of tenascin-C. Tenascin-C is also found in reticular fibers in lymphoid tissues, which are major sites involved in the regulation of adaptive immunity.

View Article and Find Full Text PDF

The extracellular matrix (ECM) molecule Tenascin-C (TNC) is well-known to promote tumor progression by multiple mechanisms. However, reliable TNC detection in tissues of tumor banks remains limited. Therefore, we generated dromedary single-domain nanobodies Nb3 and Nb4 highly specific for human TNC (hTNC) and characterized the interaction with TNC by several approaches including ELISA, western blot, isothermal fluorescence titration and negative electron microscopic imaging.

View Article and Find Full Text PDF

Tenascin C (TNC) is an extracellular matrix glycoprotein that recently emerged as an immunomodulator. TNC-deficient (TNC) mice were reported to have a reduced inflammatory response upon systemic administration of lipopolysaccharide, the toxic component of gram-negative bacteria. Here, we investigated the role of TNC during gram-negative pneumonia derived sepsis.

View Article and Find Full Text PDF

The composition and physical properties of the extracellular matrix (ECM) critically influence tumor progression, but the molecular mechanisms underlying ECM layering are poorly understood. Tumor-stroma interaction critically depends on cell communication mediated by exosomes, small vesicles generated within multivesicular bodies (MVBs). We show that caveolin-1 (Cav1) centrally regulates exosome biogenesis and exosomal protein cargo sorting through the control of cholesterol content at the endosomal compartment/MVBs.

View Article and Find Full Text PDF

Inherent immune suppression represents a major challenge in the treatment of human cancer. The extracellular matrix molecule tenascin-C promotes cancer by multiple mechanisms, yet the roles of tenascin-C in tumor immunity are incompletely understood. Using a 4NQO-induced oral squamous cell carcinoma (OSCC) model with abundant and absent tenascin-C, we demonstrated that tenascin-C enforced an immune-suppressive lymphoid stroma via CCL21/CCR7 signaling, leading to increased metastatic tumors.

View Article and Find Full Text PDF

Tenascin-C (TNC) and tenascin-W (TNW), large hexameric glycoproteins overexpressed in the tumor microenvironment, are useful tumor biomarkers for theranostic applications. For now, polyclonal and monoclonal antibodies, as well as aptamers targeting TNC and TNW have been developed. However, the immunostaining sensitivity of antibodies is very heterogenous.

View Article and Find Full Text PDF

The interplay between cancer cells and immune cells is a key determinant of tumor survival. Here, we uncovered how tumors exploit the immunomodulatory properties of the extracellular matrix to create a microenvironment that enables their escape from immune surveillance. Using orthotopic grafting of mammary tumor cells in immunocompetent mice and autochthonous models of breast cancer, we discovered how tenascin-C, a matrix molecule absent from most healthy adult tissues but expressed at high levels and associated with poor patient prognosis in many solid cancers, controls the immune status of the tumor microenvironment.

View Article and Find Full Text PDF

Components with self-assembly properties derived from plant viruses provide the opportunity to design biological nanoscaffolds for the ordered display of agents of diverse nature and with complementing functions. With the aim of designing a functionalized nanoscaffold to target cancer, the coat protein (CP) of (TMV) was tested as nanocarrier for an insoluble, highly hydrophobic peptide that targets the transmembrane domain of the Neuropilin-1 (NRP1) receptor in cancer cells. The resulting construct CPL-K (CP-linker-"Kill") binds to NRP1 in cancer cells and disrupts NRP1 complex formation with PlexA1 as well as downstream Akt survival signaling.

View Article and Find Full Text PDF

Metastasis is a major cause of death in cancer patients. The extracellular matrix molecule tenascin-C is a known promoter of metastasis, however the underlying mechanisms are not well understood. To further analyze the impact of tenascin-C on cancer progression we generated MMTV-NeuNT mice that develop spontaneous mammary tumors, on a tenascin-C knockout background.

View Article and Find Full Text PDF

Background Information: Tumor stroma remodeling is a key feature of malignant tumors and can promote cancer progression. Laminins are major constituents of basement membranes that physically separate the epithelium from the underlying stroma.

Results: By employing mouse models expressing high and low levels of the laminin α1 chain (LMα1), we highlighted its implication in a tumor-stroma crosstalk, thus leading to increased colon tumor incidence, angiogenesis and tumor growth.

View Article and Find Full Text PDF

Resistance to antiangiogenic drugs limits their applicability in cancer therapy. Here, we show that revascularization and progression of pancreatic neuroendocrine tumors (PNETs) under extended vascular-endothelial growth factor A (VEGFA) blockade are dependent on periostin (POSTN), a matricellular protein expressed by stromal cells. Genetic deletion of Postn in RIP1-Tag2 mice blunted tumor rebounds of M2-like macrophages and αSMA stromal cells in response to prolonged VEGFA inhibition and suppressed PNET revascularization and progression on therapy.

View Article and Find Full Text PDF