Publications by authors named "Oren Rotman"

In recent years, the treatment of aortic stenosis with TAVR has rapidly expanded to younger and lower-risk patients. However, persistent thrombotic events such as stroke and valve thrombosis expose recipients to severe clinical complications that hamper TAVR's rapid advance. We presented a novel methodology for establishing a link between commonly acceptable mild paravalvular leak (PVL) levels through the device and increased thrombogenic risk.

View Article and Find Full Text PDF

Tissue-based transcatheter aortic valve (AV) replacement (TAVR) devices have been a breakthrough approach for treating aortic valve stenosis. However, with the expansion of TAVR to younger and lower risk patients, issues of long-term durability and thrombosis persist. Recent advances in polymeric valve technology facilitate designing more durable valves with minimal in vivo adverse reactions.

View Article and Find Full Text PDF

Short peripheral catheters are ubiquitous in today's healthcare environment, enabling effective and direct delivery of fluids and medications intravenously. A commonly associated complication of their use is thrombophlebitis-thrombus formation-involved inflammation of the vein wall. A novel design of a very short peripheral catheter showed promising results in a pig model in reducing the mechanical irritation to the vein wall.

View Article and Find Full Text PDF

Following in vitro tests established for surgical prosthetic heart valves, transcatheter aortic valves (TAV) are similarly tested in idealized geometries-excluding effects that may hamper TAVR performance in situ. Testing in vitro in pulse duplicator systems that incorporated patient-specific replicas would enhance the testing veracity by bringing it closer to the clinical scenario. To that end we compare TAV hemodynamic performance tested in idealized geometries according to the ISO standard (baseline performance) to that obtained by testing the TAVs following deployment in patient-specific replicas.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) has emerged as an effective therapy for the unmet clinical need of inoperable patients with severe aortic stenosis (AS). Current clinically used tissue TAVR valves suffer from limited durability that hampers TAVR's rapid expansion to younger, lower risk patients. Polymeric TAVR valves optimized for hemodynamic performance, hemocompatibility, extended durability, and resistance to calcific degeneration offer a viable solution to this challenge.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical valve replacement in high-risk patients afflicted by severe aortic stenosis. Despite newer-generation devices enhancements, post-procedural complications such as paravalvular leakage (PVL) and related thromboembolic events have been hindering TAVR expansion into lower-risk patients. Computational methods can be used to build and simulate patient-specific deployment of transcatheter aortic valves (TAVs) and help predict the occurrence and degree of PVL.

View Article and Find Full Text PDF

Introduction: Transcatheter aortic valve replacement (TAVR) has emerged as an effective minimally-invasive alternative to surgical valve replacement in medium- to high-risk, elderly patients with calcific aortic valve disease and severe aortic stenosis. The rapid growth of the TAVR devices market has led to a high variety of designs, each aiming to address persistent complications associated with TAVR valves that may hamper the anticipated expansion of TAVR utility.

Areas Covered: Here we outline the challenges and the technical demands that TAVR devices need to address for achieving the desired expansion, and review design aspects of selected, latest generation, TAVR valves of both clinically-used and investigational devices.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) is a minimally-invasive approach for treating severe aortic stenosis. All clinically-used TAVR valves to date utilize chemically-fixed xenograft as the leaflet material. Inherent limitation of the tissue (e.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) has emerged as an effective alternative to conventional surgical aortic valve replacement (SAVR) in high-risk elderly patients with calcified aortic valve disease. All currently FDA-approved TAVR devices use tissue valves that were adapted to but not specifically designed for TAVR use. Emerging clinical evidence indicates that these valves may get damaged during crimping and deployment- leading to valvular calcification, thrombotic complications, and limited durability.

View Article and Find Full Text PDF

Transcatheter aortic valve replacement (TAVR) is an over-the-wire procedure for treatment of severe aortic stenosis (AS). TAVR valves are conventionally tested using simplified left heart simulators (LHS). While those provide baseline performance reliably, their aortic root geometries are far from the anatomical in situ configuration, often overestimating the valves' performance.

View Article and Find Full Text PDF

Short peripheral catheters are ubiquitous in today's healthcare environment enabling effective delivery of fluids and medications directly into a patient's vasculature. However, complications related to their use, such as short peripheral catheter thrombophlebitis (SPCT), affect up to 80% of hospitalized patients. While indwelling within the vein, the catheters exert prolonged constant pressure upon the endothelium which can trigger inflammation processes.

View Article and Find Full Text PDF

Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices.

View Article and Find Full Text PDF

Short peripheral catheter thrombophlebitis (SPCT), a sterile inflammation of the vein wall, is the most common complication associated with short peripheral catheters (SPCs) and affects up to 80% of hospitalized patients receiving IV therapy. Extensive research efforts have been devoted for improvement and optimization of the catheter material, but means for examination of any novel design are limited, inaccurate and require costly comprehensive pre-clinical and clinical trials. Therefore, there is a conclusive need for a reliable quantitative method for evaluation of SPCT, in particular for research purposes examining the thrombophlebitis-related symptoms of any novel catheter design.

View Article and Find Full Text PDF

High accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes.

View Article and Find Full Text PDF

The advantage of measuring differential pressure using fluid-filled catheters is that the system is relatively inexpensive, but the readings are not accurate and affected by the common mode pressure (CMP) distortion. High accuracy differential pressure measurements are required in various biomedical applications, such as in fluid-dynamic test rigs, or in the cath-lab, from cardiac valves efficacy to functional assessment of arterial stenoses. We have designed and built a unique system in which the pressure difference was measured along the fluid flow inside a rigid circular tube using a fluid-filled double-lumen catheter.

View Article and Find Full Text PDF