Life Sci
January 2025
Aims: Type 2 diabetes (T2D) is a prevalent metabolic disease linked to obesity and metabolic syndrome (MS). The glucolipotoxic environment (GLT) impacts tissues causing low-grade inflammation, insulin resistance and the gradual loss of pancreatic β-cell function, leading to hyperglycemia. We have previously shown that Compound A (CpdA), a plant-derived dissociative glucocorticoid receptor-modulator with inflammation-suppressive activity, displays protective effects on β-cells in type 1 diabetes murine models.
View Article and Find Full Text PDFEffective drug delivery to bacterially infected mucosa remains a challenge due to the combined obstacles of the mucosal barrier, pH variations, and high concentrations of glutathione. However, polysaccharide-based responsive nanogels (NGs) can take advantage of these conditions to deliver specific antimicrobials. We explored the critical features of pH- and redox-responsive NGs to increase drug penetration, residence time, and efficacy in the infected mucosa.
View Article and Find Full Text PDFThermoresponsive nanogels (tNGs) are promising candidates for dermal drug delivery. However, poor incorporation of hydrophobic drugs into hydrophilic tNGs limits the therapeutic efficiency. To address this challenge, β-cyclodextrins (β-CD) are functionalized by hyperbranched polyglycerol serving as crosslinkers (hPG-βCD) to fabricate βCD-tNGs.
View Article and Find Full Text PDFRecent studies indicate that heat stress pathophysiology is associated with intestinal barrier dysfunction, local and systemic inflammation, and gut dysbiosis. However, inconclusive results and a poor description of tissue-specific changes must be addressed to identify potential intervention targets against heat stress illness in growing calves. Therefore, the objective of this study was to evaluate components of the intestinal barrier, pro- and anti-inflammatory signals, and microbiota community composition in Holstein bull calves exposed to heat stress.
View Article and Find Full Text PDFStaphylococcus aureus is the most frequent causal agent of bovine mastitis, which is largely responsible for milk production losses worldwide. The pathogen's ability to form stable biofilms facilitates intramammary colonization and may explain disease persistence. This virulence factor is also highly influential in the development of chronic intramammary infections refractory to antimicrobial therapy, which is why novel therapies that can tackle multiple targets are necessary.
View Article and Find Full Text PDFBovine mastitis is the most frequent and costly disease that affects dairy cattle. Non-aureus staphylococci (NAS) are currently one of the main pathogens associated with difficult-to-treat intramammary infections. Biofilm is an important virulence factor that can protect bacteria against antimicrobial treatment and prevent their recognition by the host's immune system.
View Article and Find Full Text PDFType 1 diabetes (T1D) is characterized by an immune-mediated progressive destruction of the insulin-producing β-cells. Proinflammatory cytokines trigger endoplasmic reticulum (ER) stress and subsequent insulin secretory deficiency in cultured β-cells, mimicking the islet microenvironment in T1D. β-cells undergo physiologic ER stress due to the high rate of insulin production and secretion under stimulated conditions.
View Article and Find Full Text PDFThe greatest concern in dairy farming nowadays is bovine mastitis (BM), which results mainly from bacterial colonization of the mammary gland. Antibiotics are the most widely used strategy for its prevention and treatment, but overuse has led to growing antimicrobial resistance. Pathogens have also developed other mechanisms to persist in the udder, such as biofilm formation and internalization into bovine epithelial cells.
View Article and Find Full Text PDFThe main cause of mastitis, one of the most costly diseases in the dairy industry, is bacterial intramammary infection. Many of these bacteria are biofilm formers. Biofilms have been associated with resistance to antibiotics and to the host immune system.
View Article and Find Full Text PDFStaphylococcus is the most commonly isolated genus from animals with intramammary infections, and mastitis is the most prevalent disease that affects dairy cows in many countries. These pathogens can live in biofilms, a self-produced matrix, which allow them evade the innate immune system and the antibiotic therapy, thereby producing persistent infections. The aim of this study was to explore the antimicrobial potential of chitosan nanoparticles (Ch-NPs) obtained by the reverse micellar method.
View Article and Find Full Text PDFBovine mastitis affects the health of dairy cows and the profitability of herds worldwide. Coagulase-negative staphylococci (CNS) are the most frequently isolated pathogens in bovine intramammary infection. Based on the wide range of antimicrobial, mucoadhesive and immunostimulant properties demonstrated by chitosan, we have evaluated therapy efficiency of chitosan incorporation to cloxacillin antibiotic as well as its effect against different bacterial lifestyles of seven CNS isolates from chronic intramammary infections.
View Article and Find Full Text PDFObjective: To establish the prevalence of delirium in a general intensive care unit and to identify associated factors, clinical expression and the influence on outcomes.
Methods: This was a prospective cohort study in a medical surgical intensive care unit. The Richmond Agitation-Sedation Scale and Confusion Assessment Method for the Intensive Care Unit were used daily to identify delirium in mechanically ventilated patients.
Bovine mastitis, considered the most important cause of economic losses in the dairy industry, is a major concern in veterinary medicine. Staphylococcus aureus and coagulase-negative staphylococci (CNS) are the main pathogens associated with intramammary infections, and bacterial biofilms are suspected to be responsible for the persistence of this disease. CNS from the udder are not necessarily associated with intramammary infections.
View Article and Find Full Text PDFIt is known that Chitosan (Ch) can be used in several applications, such as antimicrobial agent or as drug delivery agent. However, being its water dispersibility very low at physiological pH it is necessary to find a way to improve it. One attractive strategy is to synthesize Chitosan Nanoparticles (Ch-NPs).
View Article and Find Full Text PDFThe epiphytic bacterium Rahnella aquatilis, isolated from fruit and leaves of apples, was tested for antagonistic properties against Penicillium expansum and Botrytis cinerea on Red Delicious apple fruit. In "in vitro" assays, this bacterium inhibited completely the germination of P. expansum and B.
View Article and Find Full Text PDFJ Microbiol Methods
December 2001
Yeasts produce hydroxamate-type siderophores (iron-binding compounds) in response to Fe-stress conditions. Because these siderophores are important to the biocontrol of postharvest diseases of apple and pears, a method for screening siderophore producer yeast was developed. The screening method was carried out in special Petri dishes with eight or nine wells (25-mm diameter).
View Article and Find Full Text PDFThe production of rhodotorulic acid, a siderophore synthesized by Rhodotorula strains, was improved with the objective of achieving the biocontrol of phytopathogenic moulds. Rhodotorulic acid increased up to 60% in the presence of urea as a nitrogen source, pH near to 8 and a C:N ratio of 8:1. The siderophore-containing spent medium showed in vitro antifungal activity against important plant pathogens including Botrytis cinerea, which causes grey mould on a wide variety of host plants including numerous commercial crops.
View Article and Find Full Text PDF