Magnetic nanocomposites (MNC) are promising theranostic platforms with tunable physicochemical properties allowing for remote drug delivery and multimodal imaging. Here, we developed doxorubicin-loaded FeO-Au MNC (DOX-MNC) using electron beam physical vapor deposition (EB-PVD) in combination with magneto-mechanochemical synthesis to assess their antitumor effect on Walker-256 carcinosarcoma under the influence of a constant magnetic (CMF) and electromagnetic field (EMF) by comparing tumor growth kinetics, magnetic resonance imaging (MRI) scans and electron spin resonance (ESR) spectra. Transmission (TEM) and scanning electron microscopy (SEM) confirmed the formation of spherical magnetite nanoparticles with a discontinuous gold coating that did not significantly affect the ferromagnetic properties of MNC, as measured by vibrating-sample magnetometry (VSM).
View Article and Find Full Text PDFCarbon monoxide (CO) is notorious for its toxic effects but is also recognized as a gasotransmitter with considerable therapeutic potential. Due to the inherent challenges in its delivery, the utilization of organic CO photoreleasing molecules (photoCORMs) represents an interesting alternative to CO administration characterized by high spatial and temporal precision of release. This paper focused on the design, synthesis, and photophysical and photochemical studies of 20 3-hydroxyflavone (flavonol) and 3-hydroxyflavothione derivatives as photoCORMs.
View Article and Find Full Text PDFDespite efforts in osteosarcoma (OS) research, the role of inductive moderate hyperthermia (IMH) in delivering and enhancing the antitumor effect of liposomal doxorubicin formulations (LDOX) remains unresolved. This study investigated the effect of a combination treatment with LDOX and IMH on Saos-2 human OS cells. We compared cell viability using a trypan blue assay, apoptosis and reactive oxygen species (ROS) measured by flow cytometry and pro-apoptotic Bax protein expression examined by immunocytochemistry in response to IMH (42 MHz frequency, 15 W power for 30 min), LDOX (0.
View Article and Find Full Text PDFThe article presents the results of an experimental study of the effect of high-temperature thermal pretreatment on the specific resistance to filtration (SRF) of the sewage sludge (SS) from the Lviv wastewater treatment plant (WWTP), which is a combination of primary sludge and excess-activated sludge collected in primary sedimentation tanks. The kinetics of SRF reduction over time at temperatures of 140 - 150 °С are described by simple exponents, while at temperatures of 160 - 170 °С, they are described by modified two-parameter exponents. The study analyzed the dimensionless optimization function, which is the product of the final relative SRF of the sludge and the dimensionless time of thermal pretreatment.
View Article and Find Full Text PDFBy using a quantum-chemical approach, B2PLYP-D2/6-311+G**//B3LYP/6-31+G*, we have carried out a detailed study of the assembly of 1-pyrrolines from -benzyl-1-phenylmethanimine and phenylacetylene in the superbasic medium KOBu/dimethyl sulfoxide (DMSO). In this way, we have considered, both theoretically and experimentally, the mechanisms of the assembly through a concerted and stepwise nucleophilic cycloaddition and have addressed the side processes accompanying the assembly. It is found that the assembly via the concerted cycloaddition is kinetically more favorable than that via the stepwise cycloaddition.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
May 2023
Magnetic nanoparticles (MNs) are typically used as contrast agents for magnetic resonance imaging or as drug carriers with a remotely controlled delivery to the tumor. However, they can also potentiate the action of anticancer drugs under the influence of applied constant magnetic (CMFs) and electromagnetic fields (EMFs). This review demonstrates the role of magneto-mechanochemical effects produced by MNs alone and loaded with anticancer agents (MNCs) in response to CMFs and EMFs for modulation of tumor redox state.
View Article and Find Full Text PDFZh Nevrol Psikhiatr Im S S Korsakova
September 2022
Objective: To study the content of antibodies to the basic protein of myelin IgM in the blood of children with traumatic brain injury for a comprehensive assessment of the severity and prediction of outcomes of TBI.
Material And Methods: 81 children with traumatic brain injury (TBI) of varying severity and 29 children of the comparison group aged 2 months to 18 years were examined, in whom the content of IgM antibodies in blood plasma was determined.
Results: In groups of children with different severity of TBI, the average content of IgM antibodies in the blood is higher than in children of the comparison group, and the values of IgM antibodies correlate with the severity of TBI.
Semistabilized diazatrienyl anions are generated by the reaction of 2-pyridylarylimines with arylacetylenes in superbase systems MOBu (M = Li, Na, K)/DMSO at ambient temperature for 15 min. The initial intermediate -centered propargyl-1,3-diaza-1,3,5-trienyl anions undergo intermolecular cyclization to benzyl imidazopyridine anions (formally [3 + 2] cycloaddition), further intercepting a second molecule of the starting pyridylimines or a proton of medium to afford ()-stilbene/imidazopyridine ensembles and benzyl imidazopyridines. The charge distribution in all intermediate anions and their synthetic evolution are consistent with quantum-chemical analysis (B2PLYPD/6-311+G**//B3LYP/6-31+G*).
View Article and Find Full Text PDFCarbon monoxide (CO) is an endogenous signaling molecule that regulates diverse physiological processes. The therapeutic potential of CO is hampered by its intrinsic toxicity, and its administration poses a significant challenge. Photoactivatable CO-releasing molecules (photoCORMs) are an excellent tool to overcome the side effects of untargeted CO administration and provide precise spatial and temporal control over its release.
View Article and Find Full Text PDFBackground: One of the major factors restricting in vivo efficacy of dendritic cells (DCs) based immunotherapy is the inefficient migration of these cells to the lymphoid tissue, wherein DCs activate antigen-specific T cells. A fundamentally new approach for the possibility of enhancing the antitumor effects of DC-based immunotherapy may be the use of magnetically sensitive nanocomplexes to increase the target delivery of DCs to the lymph nodes of the recipient.
Aim: To study the antitumor and immunomodulatory effects of the DC-nanovaccine with magnetosensitive properties and its influence on the immunosuppressive tumor microenvironment in mice with sarcoma 37.
Objective: This study aimed to determine whether texture parameters could be used in differentiation between the tumor and the peritumoral tissues based on hybrid 18F-Fluorodeoxyglucose positron emission tomography/computed tomography imaging for patients with rectal cancer.
Methods: Seven parameters, including heterogeneity, entropy, energy, skewness, kurtosis, standard deviation, and average brightness, were extracted from positron emission tomography/computed tomography scans of 22 patients (12 male and 10 female; mean age, 61 ± 2 years).
Results: The peritumoral tissue had a significantly lower value of the heterogeneity parameter (23%) than the tumor.
We compare the effects of an extremely low-frequency electromagnetic field (EMF) with the chemotherapeutic agent doxorubicin (DOX) on tumor growth and the hepatic redox state in Walker-256 carcinosarcoma-bearing rats. Animals were divided into five groups with one control (no tumor) and four tumor-bearing groups: no treatment, DOX, DOX combined with EMF and EMF. While DOX and DOX + EMF provided greater inhibition of tumor growth, treatment with EMF alone resulted in some level of antitumor effect ( < .
View Article and Find Full Text PDFThe mechanism of aldol condensation of ketones in KOH/DMSO superbasic media has been investigated using the B2PLYP(D2)/6-311+G**//B3LYP/6-31+G* quantum-chemical approach. It is found that the interaction of three ketone molecules resulting in the formation of the cyclohex-2-enone structure [isophorone or 3,5-dicyclohexyl-5-methylspiro(5.5)undec-2-en-1-one] is thermodynamically more favorable than the interaction of two, three, or four molecules of ketone, resulting in the formation of linear products of the condensation.
View Article and Find Full Text PDFJ Biomater Appl
November 2021
Although nanotechnology advances have been exploited for a myriad of purposes, including cancer diagnostics and treatment, still there is little discussion about the mechanisms of remote control. Our main aim here is to explain the possibility of a magnetic field control over magnetic nanocomplexes to improve their delivery, controlled release and antitumor activity. In doing so we considered the nonlinear dynamics of magnetomechanical and magnetochemical effects based on free radical mechanisms in cancer development for future pre-clinical studies.
View Article and Find Full Text PDFPurpose: To evaluate the efficacy of neoadjuvant chemotherapy in combination with regional inductive moderate hyperthermia for patients with locally advanced breast cancer.
Patients And Methods: 200 patients with stage IIB-IIIA breast cancer received neoadjuvant chemotherapy (control group, n = 97) or chemotherapy combined with hyperthermia (experimental group, n = 103). Inductive hyperthermia was set at 27.
Carbon monoxide (CO) is an endogenous signaling molecule that controls a number of physiological processes. To circumvent the inherent toxicity of CO, light-activated CO-releasing molecules (photoCORMs) have emerged as an alternative for its administration. However, their wider application requires photoactivation using biologically benign visible and near-infrared (NIR) light.
View Article and Find Full Text PDFBy employing the contemporary B2PLYP(D3)/6-311+G**//B3LYP/6-31+G* method of quantum chemistry, we unraveled the mechanism of a recently discovered cascade assembly of -phenyl-2,5-dimethylpyrrole from one molecule of aniline and three molecules of acetylene activated by KOH/DMSO and KOBu/DMSO superbase systems. For the established mechanism, we compare and analyze the activity of these two superbases. The reaction is found to be activated by the interaction of aniline with acetylene, and the barrier associated with this interaction turns out to be the limiting one.
View Article and Find Full Text PDFBackground: The resection of metastases within healthy parenchyma improves significantly the long-term outcome in metastatic colorectal cancer. Until now, the resection technique involves Pringle maneuver, which allows reducing blood loss during transsection of liver parenchyma. However, the classical Pringle maneuver has restrictions due to ischemia/reperfusion (I/R) effect, in particular increasing risk of tumor recurrence after liver surgery.
View Article and Find Full Text PDFChaos theory (nonlinear dynamics) defines cancer as a complex adaptive system in which each cyclic point corresponds to the bifurcation at which changes in signaling pathways emerge. Quantitative assessment of chaos in digital medical images such as electron microscopy, histology and cytology sections collected from patients with malignant cutaneous melanoma employed the following calculation parameters: the irregularity of external contours, internal heterogeneity based on brightness distribution of macromo-lecules, chromosomes, organelles, inclusion bodies, cells and tissues, kurtosis, entropy and the asymmetry coefficient. The present study undertook a nonlinear analysis of the chaotic hierarchy of malignant melanoma.
View Article and Find Full Text PDFThe biological and medical aspects of magnetochemical effects in nanotherapy of tumors remain poorly studied. The present paper investigates the influence of nonlinear magnetochemical effects of anisotropic magnetic nanodots on an animal tumor model. The magnetic properties and electron spin resonance spectra of magnetic nanodots and doxorubicin were investigated after mechano-magnetochemical synthesis.
View Article and Find Full Text PDFThe paper aims to compare zeta potentials, magnetic properties, electron spin resonance, photoluminescence (PL) spectra and antitumor effect of magneto-mechano-chemically synthesized magneto-sensitive nanocomplexes loaded with the anticancer drug doxorubicin (DOXO) during nanotherapy of Walker-256 carcinosarcoma carried out by a magnetic resonance system. Diamagnetic DOXO acquired the properties of a paramagnetic substance after synthesis. MNC comprising superparamagnetic nanoparticles (NP) and DOXO had different g-factors, zeta potentials, a lower saturation magnetic moment, area of the hysteresis loop, and a higher coercivity compared to similar MNC with ferromagnetic NP.
View Article and Find Full Text PDFPurpose: Regional inductive moderate hyperthermia in combination with chemotherapy can improve the therapeutic efficacy in patients with breast cancer with multiple liver metastases.
Methods: The study included 103 patients with breast cancer with multiple liver metastases: 53 patients (main group) who received a combined chemotherapy (TC drug combination) and regional inductive moderate hyperthermia treatment and 50 patients (control group) who received chemotherapy (TC drug combination) alone. Regional inductive moderate hyperthermia exploited electromagnetic fields with an operating frequency of 27.
Modulation of reactive oxygen and nitrogen species in a tumor could be exploited for nanotherapeutic benefits. We investigate the antitumor effect in Walker-256 carcinosarcoma of magnetic nanodots composed of doxorubicin-loaded FeO nanoparticles combined with electromagnetic fields. Treatment using the magnetic nanodot with the largest hysteresis loop area (3402 erg/g) had the greatest antitumor effect with the minimum growth factor 0.
View Article and Find Full Text PDFTransition-metal-free C-vinylation of acetone with phenylacetylene catalyzed by superbases MOH/DMSO and tBuOM/DMSO (M = Na, K) has been theoretically evaluated in the B3LYP/6-311++G**//B3LYP/6-31+G* approach to rationalize similarities and differences in activity of the above catalytic systems. The close solvate surroundings of sodium and potassium tert-butoxides have been studied. Formation of tBuOM· nDMSO complexes and their structure and thermodynamic stability are discussed in comparison with similar complexes of alkali-metal hydroxides MOH· nDMSO.
View Article and Find Full Text PDF