Publications by authors named "Orawan Winther-Jensen"

Herein we describe the use of vapour phase polymerisation (VPP) to form an elastomeric conducting hybrid, via the combination of poly(3,4-ethylene dioxythiophene) (PEDOT) and poly(glycerol sabecate) (PGS). The extent of PGS curing inversely affected the degree of PEDOT penetration in the material. At longer cure times, samples exhibited a negligible strain-resistance relationship.

View Article and Find Full Text PDF

This work is the further development of the previous pH (effective) sensor work where a biologically derived proton-active redox centre - riboflavin (RFN) - was entrapped into a vapour phase polymerised poly(3,4-ethylenedioxythiophene) film and ferrocene (Fc) dissolved in the sample solution was used as an internal reference redox couple. Here, we report a disposable solid state pH (effective) sensor where we successfully incorporated both RFN and Fc into a single solid state electrode. The electrodes were then used for pH (effective) sensing where water is not required.

View Article and Find Full Text PDF

Ion mobility has a direct influence on the performance of conducting polymers in a number of applications as it dictates the operational speed of the devices. We report here the enhanced ion mobility of poly(3,4-ethylene dioxythiophene) after incorporation of gelatin. The gelatin-rich domains were seen to provide an ion pathway through the composites.

View Article and Find Full Text PDF

Immobilisation of enzymes on a breathable electrode can be useful for various applications where the three-phase interface between gas or chemical vapour, electrolyte and electrode is crucial for the reaction. In this paper, we report the further development of the breathable electrode concept by immobilisation of alcohol dehydrogenase into vapour-phase polymerised poly(3,4-ethylene dioxythiophene) that has been coated onto a breathable membrane. Typical alcohol sensing, whereby the coenzyme β-Nicotinamide adenine dinucleotide (NADH) is employed as a redox-mediator, was successfully used as a model reaction for the oxidation of ethanol.

View Article and Find Full Text PDF

Conducting polymers (CPs) are increasingly being used to interface with cells for applications in both bioelectronics and tissue engineering. To facilitate this interaction, cells need to adhere and grow on the CP surface. Extracellular matrix components are usually necessary to support or enhance cell attachment and growth on polymer substrates.

View Article and Find Full Text PDF

We describe a solid state electrode structure based on a biologically derived proton-active redox center, riboflavin (RFN). The redox reaction of RFN is a pH-dependent process that requires no water. The electrode was fabricated using our previously described 'stuffing' method to entrap RFN into vapor phase polymerized poly(3,4-ethylenedioxythiophene).

View Article and Find Full Text PDF

We describe for the first time the electrochemical co-deposition of composites based on a reactive base metal and graphene directly from a one-pot aqueous mixture containing graphene oxide and Zn(2+). In order to overcome stability issues the Zn(2+) concentration was kept below a critical threshold concentration, ensuring stable graphene oxide suspensions in the presence of cationic base metal precursors. This approach ensures the compatibility between the cationic base metal precursor and graphene oxide, which is more challenging compared to previously reported anionic noble metal complexes.

View Article and Find Full Text PDF

Glucose oxidase (GOx) is an important enzyme with great potential application for enzymatic sensing of glucose, in implantable biofuel cells for powering of medical devices in vivo and for large-scale biofuel cells for distributed energy generation. For these applications, immobilisation of GOx and direct transfer of electrons from the enzyme to an electrode material is required. This paper describes synthesis of conducting polymer (CP) structures in which GOx has been entrained such that direct electron transfer is possible between GOx and the CP.

View Article and Find Full Text PDF

We report for the first time an in situ photopolymerization of model co-monomers, 2-hydroxyethyl methacrylate (HEMA) and tetra (ethylene glycol) diacrylate (TEGDA), in an IL electrolyte containing I(2) for DSSCs. TiO(2) nanoparticles were used as the photo-initiator and co-gelator in a charge transfer polymerization reaction. The gel-IL polymer obtained was characterized in terms of the diffusion properties of the electrolyte.

View Article and Find Full Text PDF

Thin, adherent films of CdS were electrodeposited on FTO coated glass by reduction of a thiosulfate precursor in the presence of Cd(II) ions in methyltributylphosphonium (P(1,4,4,4)) tosylate ionic liquid at 130-150 degrees C. The structural properties of the deposits have been characterized by profilometry, scanning electron microscopy (SEM) and optical microscopy. Energy dispersive X-ray spectroscopy (EDX) was used to evaluate the chemical composition, which was found to be close to stoichiometric.

View Article and Find Full Text PDF

A novel self-polymerised ionic liquid (IL) gel was prepared at room temperature (RT), without light or heat or addition of initiator, using a new IL, choline formate (CF), and 2-hydroxyethyl methacrylate (HEMA).

View Article and Find Full Text PDF

The air electrode, which reduces oxygen (O2), is a critical component in energy generation and storage applications such as fuel cells and metal/air batteries. The highest current densities are achieved with platinum (Pt), but in addition to its cost and scarcity, Pt particles in composite electrodes tend to be inactivated by contact with carbon monoxide (CO) or by agglomeration. We describe an air electrode based on a porous material coated with poly(3,4-ethylenedioxythiophene) (PEDOT), which acts as an O2 reduction catalyst.

View Article and Find Full Text PDF