Publications by authors named "Orawan Suwantong"

Hydrogels based on poly(vinyl alcohol), silk sericin, and gelatin containing Camellia oleifera oil (CO)-loaded chitosan nanoparticles (CSNPs) were fabricated. The loading of CO into CSNPs was achieved by a two-step procedure, which included an oil-in-water emulsion and an ionic gelation method. SEM images of CO-loaded CSNPs illustrated the spherical shape with aggregation of the nanoparticles.

View Article and Find Full Text PDF

Injectable self-healing hydrogels are attractive materials for use as wound dressings. To prepare such hydrogels, the current study used quaternized chitosan (QCS) to improve the solubility and antibacterial activity and oxidized pectin (OPEC) to introduce aldehyde groups for Schiff's base reaction with the amine groups from QCS. Self-healing hydrogels were made by co-injection of polymer solutions at specific polymer concentrations and reagent ratios that optimized both Schiff's base reactions and ionic interactions.

View Article and Find Full Text PDF

Quaternized chitosan (QCS) was blended with pectin (Pec) to improve water solubility and antibacterial activity of the hydrogel films. Propolis was also loaded into hydrogel films to improve wound healing ability. Therefore, the aim of this study was to fabricate and characterize the propolis-loaded QCS/Pec hydrogel films for use as wound dressing materials.

View Article and Find Full Text PDF

In daily life, people are often receiving minor cuts due to carelessness, leaving wounds on the skin. If wound healing is interrupted and the healing process does not finish, pathogens can easily enter wounds and cause infection. Liquid bandages are a fast and convenient way to help stop the bleeding of superficial wounds.

View Article and Find Full Text PDF

This study concentrated on developing quercetin/cyclodextrin inclusion complex-loaded polyvinyl alcohol (PVA) hydrogel for enhanced stability and solubility. Quercetin was encapsulated in hydroxypropyl-β-cyclodextrin (HP-β-CD) by the solvent evaporation method. The prepared quercetin/HP-β-CD inclusion complex showed 90.

View Article and Find Full Text PDF

The potential of chitosan nanoparticles (CSNPs) loaded with essential oil (EO) incorporated into semi-solid PVA hydrogels for use in wound management was studied. Two types of essential oil were compared including clove essential oil (CEO) and turmeric essential oil (TEO). The EO-loaded CSNPs were prepared by a two-step method; oil-in-water (o/w) emulsification followed by ionic gelation using different ratios of chitosan:EO (i.

View Article and Find Full Text PDF

The aim of this study was to fabricate and characterize curcumin-β-cyclodextrin inclusion complex loaded sodium alginate/chitosan (CMx-loaded SA/CS) bilayer hydrogels for use as wound dressing materials. Various concentrations of calcium chloride (CaCl) including 0.05, 0.

View Article and Find Full Text PDF

In this research, the cellulose sponges with curcumin-β-cyclodextrin inclusion complex (CMx) and chitosan (CS) were fabricated for use as wound dressings. 1-Allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid as a green solvent was used for the fabrication of cellulose sponges. Due to the low aqueous solubility and low bioavailability of curcumin, cyclodextrins (CDs) were applied and complexed with curcumin to obtain CMx.

View Article and Find Full Text PDF

Recent advances in electrospinning are yielding intricate scaffolds for use in regenerative medicine. To explore the possibility of creating bioactive scaffolds with functional gene expression systems, electrospun gelatin mats bearing plasmid DNA (pDNA) polyplexes are explored. The pDNA is first condensed with a lipid-modified polyethylenimine (PEI) to create polyplexes including a poly(aspartic acid) (pAsp) additive, and subsequently electrospun after mixing the polyplexes in gelatin solution.

View Article and Find Full Text PDF

In this study, the injectable thermogelling hydrogels under physiological temperature were prepared using chitosan (CS) and silk fibroin (SF). These hydrogels were loaded with crude water extract of longan seed (WLS) to improve osteoblast differentiation and stimulate mineralization in bone cells. These hydrogels showed a sol-to-gel transition time at 37 °C approximately 4-10 min and the formation of microstructure with small slender pores.

View Article and Find Full Text PDF

In this study, hydrogels that were thermosensitive at body temperature were developed using chitosan (CS)/silk sericin (SS)/β-glycerophosphate (β-GP) loaded with longan seed extract (LE) for use in bone tissue engineering. These hydrogels were transformed into a gel at 37 °C within 10 min interactions between CS and β-GP. The incorporation of SS resulted in a shorter gelation time of 5-7 min.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs)-loaded alginate beads embedded in gelatin scaffolds were successfully prepared. The AgNPs-loaded calcium alginate beads were prepared by electrospraying method. The effect of alginate concentration and applied voltage on shape and diameter of beads was studied.

View Article and Find Full Text PDF

Characterization of a polymer library engineered to enhance their ability to protect and deliver their nucleotide cargo to the cells is reported. The ζ-potential continuously increased with higher polymer:siRNA weight ratio, and the ζ-potential of lipid-modified polymers:siRNA complexes were higher than PEI2 at all ratios. At polymer:siRNA ratio of 1:1, all lipid-substituted polymers showed complete protection against degradation.

View Article and Find Full Text PDF

Ultra-fine cellulose acetate (CA; M(w) approximately 30,000 Da; degree of acetyl substitution approximately 2.4) fiber mats containing either asiaticoside [from the plant Centella asiatica (L.); either in the form of a crude extract (CACE) or pure substance (PAC)] or curcumin (CM; from the plant Curcuma longa L.

View Article and Find Full Text PDF

To make polycaprolactone (PCL) more suitable for tissue engineering, PCL in the form of electrospun fibrous scaffolds was first modified with 1,6-hexamethylenediamine to introduce amino groups on their surface. Various biomolecules, i.e.

View Article and Find Full Text PDF

This study was conducted in order to develop amphiphilic, low molecular weight polymeric carriers for nonviral gene delivery. Caprylic, myristic, palmitic, stearic, oleic and linoleic acids were grafted onto the 2 kDa polyethylenimine (PEI) and properties critical for gene delivery were investigated using 293T and bone marrow stromal cells. The extent of lipid substitution on the polymers was controlled by the lipid:PEI feed ratio during the synthesis.

View Article and Find Full Text PDF

Electrospinning is a process used to produce ultrafine fibers with diameters in the nanometer range. Electrospun fiber mats have high potentials for biomedical uses, due to their high surface area and ease of drug incorporation into the fibers. They can be used as carriers for drug delivery and can enhance drug release and skin permeability.

View Article and Find Full Text PDF

The in vitro responses of Schwann cells (RT4-D6P2T, a schwannoma cell line derived from a chemically induced rat peripheral neurotumor) on various types of electrospun fibrous scaffolds of some commercially available biocompatible and biodegradable polymers, i.e., poly(3-hydroxybutyrate) (PHB), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polycaprolactone (PCL), poly(l-lactic acid) (PLLA), and chitosan (CS), were reported in comparison with those of the cells on corresponding solution-cast film scaffolds as well as on a tissue-culture polystyrene plate (TCPS), used as the positive control.

View Article and Find Full Text PDF

In the present contribution, the potential for use of the ultrafine electrospun fiber mats of poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) as scaffolding materials for skin and nerve regeneration was evaluated in vitro using mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) as reference cell lines. Comparison was made with PHB and PHBV films that were prepared by solution-casting technique. Indirect cytotoxicity assessment of the as-spun PHB and PHBV fiber mats with mouse fibroblasts (L929) and Schwann cells (RT4-D6P2T) indicated that the materials were acceptable to both types of cells.

View Article and Find Full Text PDF