This study aimed to investigate the behavior of smart bilayer films under various temperature and relative humidity (RH). Smart bilayer films were fabricated using sodium alginate with incorporated butterfly pea anthocyanin and agar containing catechin-lysozyme. Cellulose nanospheres were added at concentrations of 0% and 10% w/w of the film and subjected to test at 4 °C and 25 °C, considering different RHs (0%, 50%, and 80%).
View Article and Find Full Text PDFThis study aimed to combine various natural pH indicators of anthocyanin from Karanda (CA) with anthocyanin from butterfly pea flower (BA) or curcumin (CC) to improve the sensitivity of CA. CA75/BA25 and CA25/CC75 enhanced the sensitivity of the endpoint colour change of CA. A smart colorimetric sensing film was also developed and characterised by loading different natural pH indicators on carboxymethyl cellulose (CMC) films.
View Article and Find Full Text PDFBio-based film is an eco-friendly alternative to petroleum-based packaging film. The effects of biocomposite wrapping film enhanced with dragon fruit peel extract (0, 2% w/v, respectively) and currently used commercial packaging film (polypropylene; PP) on coconut milk caramels during storage (30 °C, 75% RH, nine days) were studied. Both 0% and 2% DPE-enriched biocomposite films were thicker and had higher water vapor permeability and solubility than the PP film but poorer mechanical characteristics.
View Article and Find Full Text PDFSmart packaging can provide real-time information about changes in food quality and impart a protective effect to the food product by using active agents. This study aimed to develop a smart bilayer film (alginate/agar) with a cellulose nanosphere (CNs) from corncob. The bilayer films were prepared using 1.
View Article and Find Full Text PDFThe effects of green tea extract (GTE) at varying concentrations (0.000, 0.125, 0.
View Article and Find Full Text PDFCellulose nanospheres (CN) have been considered a leading type of nanomaterial that can be applied as a strengthening material in the production of nanocomposites. This work aimed to isolate and characterize the properties of CN from different agricultural by-products. CNs were successfully isolated from rice straw, corncob, Phulae pineapple leaf and peel using acid hydrolysis (60% H2SO4) combined with homogenization-sonication (homogenized at 12,000 rpm for 6 min and ultrasonicated for 10 min).
View Article and Find Full Text PDFThe effects of zinc oxide nanoparticles (ZnONPs) on the properties of rice starch−gelatin (RS−G) films were investigated. ZnONPs were synthesized by a green method utilizing Asiatic pennywort (Centella asiatica L.) extract.
View Article and Find Full Text PDFThis study aimed to develop intelligent gelatin films incorporated with sappan (Caesalpinia sappan L.) heartwood extracts (SE) and characterize their properties. The intelligent gelatin film was prepared through a casting method from gelatin (3%, w/v), glycerol (25% w/w, based on gelatin weight), and SE at various concentrations (0, 0.
View Article and Find Full Text PDFCellulose is an abundant component of the plant biomass in agricultural waste valorization that may be exploited to mitigate the excessive use of synthetic non-biodegradable materials. This work aimed to investigate the cellulose utilized by alkaline extraction with a prior bleaching process from rice straw, corncob, Phulae pineapple leaves, and Phulae pineapple peels. The bleaching and alkaline extraction process was performed using 1.
View Article and Find Full Text PDF