Publications by authors named "Oranso T Mahlangu"

The addition of nanoparticles in amine solutions to produce a stable amine-based nanofluid provides a high surface area for absorption and improves the absorption rate. In this work, nanofluids were prepared by dispersing graphene oxide (GO) in monoethanolamine (MEA) and ethylenediamine (EDA) solutions for adsorption of carbon dioxide (CO) to further improve their absorption performance by providing more reaction sites on the GO framework. GO was synthesized using the modified Hummers method and characterized for physicochemical properties using SEM, EDS, FTIR, Raman analysis, and TGA.

View Article and Find Full Text PDF
Article Synopsis
  • * Traditional treatment methods involve biological and physical processes but are often expensive and inefficient, leading to the exploration of membrane distillation (MD) as a cost-effective alternative that can utilize solar energy or waste heat.
  • * Despite its potential, MD faces challenges such as membrane fouling and the need for optimized designs; laboratory research is essential, and integrating artificial intelligence may enhance process optimization and efficiency in treating dye wastewater.
View Article and Find Full Text PDF

In this study, polyethersulfone (PES) ultrafiltration (UF) membranes were modified with GO, Ag, ZnO, Ag-GO and ZnO-GO nanoparticles to improve carbamazepine removal and fouling prevention by making membrane surfaces more hydrophilic. The fabricated membranes were characterized for surface and cross-sectional morphology, surface roughness and zeta potential, as well as hydrophilicity, functional groups, surface tension parameters and water permeability Thereafter, the membranes were evaluated for their efficiency in removing MgSO and carbamazepine as well as antifouling properties. To understand the role of affinity interactions in rejection and fouling, membrane-solute adhesion energies (∆Gslm) were quantified based on the Lifshitz-van der Waals/acid-base method.

View Article and Find Full Text PDF

In this study, hydrophobic functionalized carbon nanotubes (fCNTs) and silica nanoparticles (fSiONPs) were incorporated into polyvinylidene fluoride (PVDF) flat-sheet membranes to improve their performance in membrane distillation (MD). The performance of the as-synthesized membranes was evaluated against commercial reference polytetrafluoroethylene (PTFE) flat-sheet membranes. The water contact angle (WCA) and liquid entry pressure (LEP) of the PVDF membrane were compromised after incorporation of hydrophilic pore forming polyvinylpyrrolidone (PVP).

View Article and Find Full Text PDF

In this study, Ag and Pd bimetallic nanoparticles were generated in situ in polyethersulfone (PES) dope solutions, and membranes were fabricated through a phase inversion method. The membranes were characterized for various physical and chemical properties using techniques such as FTIR, SEM, AFM, TEM, EDS, and contact angle measurements. The membranes were then evaluated for their efficiency in rejecting EOCs and resistance to protein fouling.

View Article and Find Full Text PDF

While water is a key resource required to sustain life, freshwater sources and aquifers are being depleted at an alarming rate. As a mitigation strategy, saline water desalination is commonly used to supplement the available water resources beyond direct water supply. This is achieved through effective advanced water purification processes enabled to handle complex matrix of saline wastewater.

View Article and Find Full Text PDF

Cake-enhanced concentration polarization (CECP) has been ascribed as the main cause of flux decline in dead-end filtration. An unfamiliar approach was used to investigate the role of CECP effects in the fouling of a nanofiltration membrane (NF-270) that poorly reject salts. Membrane-foulant affinity interaction energies were calculated from measured contact angles of foulants and membrane coupons based on the van der Waals/acid-base approach, and linked to resistance due to adsorption ().

View Article and Find Full Text PDF