Publications by authors named "Or Berger"

Article Synopsis
  • Recent research indicates that blocking the interaction between valosin-containing protein (VCP) and mutant huntingtin (mtHtt) can help prevent mitochondrial damage in Huntington's disease models.
  • A newly developed protein-like polymer (PLP) has shown effectiveness in cellular and animal models, significantly inhibiting mitochondrial destruction and proving more stable than control oligopeptides.
  • PLP has a remarkably longer circulation half-life (152 hours) and outperforms free peptide in efficacy tests, suggesting it could be a promising platform for developing treatments for central nervous system disorders.
View Article and Find Full Text PDF

Hepatorenal syndrome (HRS) is a life-threatening complication of end-stage liver disease first reported over a century ago, but its management still poses an unmet challenge. A therapeutic agent found to stabilize the condition is a short cyclic peptide, vasopressin analogue, terlipressin (TP). While TP is commonly prescribed for HRS patients in most parts of the world, it was only recently approved for use in the United States.

View Article and Find Full Text PDF

Nucleobase crystals demonstrate unique intrinsic fluorescence properties in the visible spectral range. This is in contrast to their monomeric counterparts. Moreover, some nucleobases were found to exhibit red edge excitation shift.

View Article and Find Full Text PDF

Herein, a synthetic polymer proteomimetic is described that reconstitutes the key structural elements and function of mussel adhesive protein. The proteomimetic was prepared via graft-through ring-opening metathesis polymerization of a norbornenyl-peptide monomer. The peptide was derived from the natural underwater glue produced by marine mussels that is composed of a highly repetitive 10 amino acid tandem repeat sequence.

View Article and Find Full Text PDF

In this paper, we report the growth of FF nanotubes examined liquid-cell transmission electron microscopy (LCTEM). This direct, high spatial, and temporal resolution imaging approach allowed us to observe the growth of peptide-based nanofibrillar structures through directional elongation. Furthermore, the radial growth profile of FF nanotubes through the addition of monomers perpendicular to the tube axis has been observed in real-time with sufficient resolution to directly observe the increase in diameter.

View Article and Find Full Text PDF

In this Minireview, we describe synthetic polymers densely functionalized with sequence-defined biomolecular sidechains. We focus on synthetic brush polymers of oligonucleotides, oligosaccharides, and oligopeptides, prepared via graft-through polymerization from biomolecule functionalized monomers. The resulting structures are brush polymers wherein a biomolecular graft is positioned at each monomer backbone unit.

View Article and Find Full Text PDF

Peptide nucleic acids (PNAs) are extensively studied for the control of genetic expression since their design in the 1990s. However, the application of PNAs in nanotechnology is much more recent. PNAs share the specific base-pair recognition characteristic of DNA together with material-like properties of polyamides, both proteins and synthetic polymers, such as Kevlar and Nylon.

View Article and Find Full Text PDF
Article Synopsis
  • - The study discusses how guanine-based peptide nucleic acid monomers can self-assemble into photonic crystals, leading to the creation of highly reflective guanine nanocrystals.
  • - These guanine nanocrystals are found in the skin and eyes of various species, producing bright and colorful structural appearances.
  • - The research highlights the ability of these structures to change in response to osmolarity, akin to the spectral changes seen in chameleons.
View Article and Find Full Text PDF

The two main branches of bionanotechnology involve the self-assembly of either peptides or DNA. Peptide scaffolds offer chemical versatility, architectural flexibility and structural complexity, but they lack the precise base pairing and molecular recognition available with nucleic acid assemblies. Here, inspired by the ability of aromatic dipeptides to form ordered nanostructures with unique physical properties, we explore the assembly of peptide nucleic acids (PNAs), which are short DNA mimics that have an amide backbone.

View Article and Find Full Text PDF

Molecular and chemical chaperones are key components of the two main mechanisms that ensure structural stability and activity under environmental stresses. Yet, chemical chaperones are often regarded only as osmolytes and their role beyond osmotic regulation is not fully understood. Here, we systematically studied a large group of chemical chaperones, representatives of diverse chemical families, for their protective influence under either thermal or chemical stresses.

View Article and Find Full Text PDF

The Gag precursor is the major structural protein of the virion of human immunodeficiency virus-1 (HIV-1). Capsid protein (CA), a cleavage product of Gag, plays an essential role in virus assembly both in Gag-precursor multimerization and in capsid core formation. The carboxy-terminal domain (CTD) of CA contains 20 residues that are highly conserved across retroviruses and constitute the major homology region (MHR).

View Article and Find Full Text PDF