Publications by authors named "Opstal A"

We recently developed a biomimetic robotic eye with six independent tendons, each controlled by their own rotatory motor, and with insertions on the eye ball that faithfully mimic the biomechanics of the human eye. We constructed an accurate physical computational model of this system, and learned to control its nonlinear dynamics by optimising a cost that penalised saccade inaccuracy, movement duration, and total energy expenditure of the motors. To speed up the calculations, the physical simulator was approximated by a recurrent neural network (NARX).

View Article and Find Full Text PDF
Article Synopsis
  • The study investigated post-saccadic oscillations (PSOs) in individuals with age-related macular degeneration (AMD), retinitis pigmentosa (RP), and those with normal vision to understand differences in eye movement stability.
  • Participants' gaze was measured during a horizontal saccade task, and PSO characteristics like amplitude, decay time, and frequency were analyzed using a damped oscillation model.
  • Results showed that those with vision loss exhibited larger oscillation amplitudes and longer decay times compared to normal vision participants, indicating that abnormal PSOs contribute to reduced fixation stability in AMD and RP.
View Article and Find Full Text PDF

Inconsistent alterations in skeletal muscle histology have been reported in adolescents with cerebral palsy (CP) and whether alterations are present in young children and differ from older children is not yet known. This study aimed to define histological alterations in the medial gastrocnemius (MG) of ambulant CP (gross-motor classification system, GMFCS I-III) stratified in two age groups (preschool children, PS: 2-5 and school age children, SA: 6-9-yr old) compared with age-matched typically developing (TD) children. We hypothesized that alterations in muscle microscopic properties are already present in PS-CP and are GMFCS level specific.

View Article and Find Full Text PDF

Human speech and vocalizations in animals are rich in joint spectrotemporal (S-T) modulations, wherein acoustic changes in both frequency and time are functionally related. In principle, the primate auditory system could process these complex dynamic sounds based on either an inseparable representation of S-T features or, alternatively, a separable representation. The separability hypothesis implies an independent processing of spectral and temporal modulations.

View Article and Find Full Text PDF

The midbrain superior colliculus is a crucial sensorimotor stage for programming and generating saccadic eye-head gaze shifts. Although it is well established that superior colliculus cells encode a neural command that specifies the amplitude and direction of the upcoming gaze-shift vector, there is controversy about the role of the firing-rate dynamics of these neurons during saccades. In our earlier work, we proposed a simple quantitative model that explains how the recruited superior colliculus population may specify the detailed kinematics (trajectories and velocity profiles) of head-restrained saccadic eye movements.

View Article and Find Full Text PDF

A cochlear implant (CI) is a neurotechnological device that restores total sensorineural hearing loss. It contains a sophisticated speech processor that analyzes and transforms the acoustic input. It distributes its time-enveloped spectral content to the auditory nerve as electrical pulsed stimulation trains of selected frequency channels on a multi-contact electrode that is surgically inserted in the cochlear duct.

View Article and Find Full Text PDF

Recent work on the visual guidance of locomotor interception of nonuniformly moving targets argued for an early reliance on first-order (velocity-based) changes in the target's bearing angle that was complemented approximately 1 second later with reliance on second-order (acceleration-based) changes. Here we provide further support for this hypothesis in a virtual driving task, in which 19 participants steered a vehicle to intercept targets moving along receding circular trajectories. Adopting a set of carefully designed target trajectories, we tested discriminating predictions with respect to the timing and direction of the first steering action.

View Article and Find Full Text PDF

Cerebral vascular reactivity quantified using blood oxygen level-dependent functional MRI in conjuncture with a visual stimulus has been proven to be a potent and early marker for cerebral amyloid angiopathy. This work investigates the influence of different postprocessing methods on the outcome of such vascular reactivity measurements. Three methods for defining the region of interest (ROI) over which the reactivity is measured are investigated: structural (transformed V1), functional (template based on the activation of a subset of subjects), and percentile (11.

View Article and Find Full Text PDF

Many cochlear implant users with binaural residual (acoustic) hearing benefit from combining electric and acoustic stimulation (EAS) in the implanted ear with acoustic amplification in the other. These bimodal EAS listeners can potentially use low-frequency binaural cues to localize sounds. However, their hearing is generally asymmetric for mid- and high-frequency sounds, perturbing or even abolishing binaural cues.

View Article and Find Full Text PDF

Introduction: To reorient gaze (the eye's direction in space) towards a target is an overdetermined problem, as infinitely many combinations of eye- and head movements can specify the same gaze-displacement vector. Yet, behavioral measurements show that the primate gaze-control system selects a specific contribution of eye- and head movements to the saccade, which depends on the initial eye-in-head orientation. Single-unit recordings in the primate superior colliculus (SC) during head-unrestrained gaze shifts have further suggested that cells may encode the instantaneous trajectory of a desired straight gaze path in a feedforward way by the total cumulative number of spikes in the neural population, and that the instantaneous gaze kinematics are thus determined by the neural firing rates.

View Article and Find Full Text PDF

This study explored the informational variables guiding steering behaviour in a locomotor interception task with targets moving along circular trajectories. Using a new method of analysis focussing on the temporal co-evolution of steering behaviour and the potential information sources driving it, we set out to invalidate reliance on plausible informational candidates. Applied to individual trials rather than ensemble averages, this Qualitative Inconsistency Detection (QuID) method revealed that steering behaviour was not compatible with reliance on information grounded in any type of change in the agent-centred target-heading angle.

View Article and Find Full Text PDF

We tested whether sensitivity to acoustic spectrotemporal modulations can be observed from reaction times for normal-hearing and impaired-hearing conditions. In a manual reaction-time task, normal-hearing listeners had to detect the onset of a ripple (with density between 0-8 cycles/octave and a fixed modulation depth of 50%), that moved up or down the log-frequency axis at constant velocity (between 0-64 Hz), in an otherwise-unmodulated broadband white-noise. Spectral and temporal modulations elicited band-pass filtered sensitivity characteristics, with fastest detection rates around 1 cycle/oct and 32 Hz for normal-hearing conditions.

View Article and Find Full Text PDF

Previous studies have indicated that the location of a large neural population in the Superior Colliculus (SC) motor map specifies the amplitude and direction of the saccadic eye-movement vector, while the saccade trajectory and velocity profile are encoded by the population firing rates. We recently proposed a simple spiking neural network model of the SC motor map, based on linear summation of individual spike effects of each recruited neuron, which accounts for many of the observed properties of SC cells in relation to the ensuing eye movement. However, in the model, the cortical input was kept invariant across different saccades.

View Article and Find Full Text PDF

Several studies have proposed that an optimal speed-accuracy tradeoff underlies the stereotyped relationship between amplitude, duration and peak velocity of saccades (main sequence). To test this theory, we asked 8 participants to make saccades to Gaussian-blurred spots and manipulated the task's accuracy constraints by varying target size (1, 3, and 5°). The largest targets indeed yielded more endpoint scatter (and lower gains) than the smallest targets, although this effect subsided with target eccentricity.

View Article and Find Full Text PDF

Unlabelled: A good assessment of dietary methyl-group donor intake (folate, choline, betaine, methionine) is needed to investigate the effect of methyl-group donor intake on children's health. The aim is to develop and validate a food-frequency questionnaire (FFQ) to estimate the daily intake of methyl-group donors in preschoolers. For the relative validity and reproducibility of the FFQ, a 7-day estimated dietary record (7d EDR) and repeated measurements 6 weeks apart (n = 77) were used respectively.

View Article and Find Full Text PDF

Purpose: Speech understanding in noise and horizontal sound localization is poor in most cochlear implant (CI) users with a hearing aid (bimodal stimulation). This study investigated the effect of static and less-extreme adaptive frequency compression in hearing aids on spatial hearing. By means of frequency compression, we aimed to restore high-frequency audibility, and thus improve sound localization and spatial speech recognition.

View Article and Find Full Text PDF

The cochlear implant (CI) allows profoundly deaf individuals to partially recover hearing. Still, due to the coarse acoustic information provided by the implant, CI users have considerable difficulties in recognizing speech, especially in noisy environments. CI users therefore rely heavily on visual cues to augment speech recognition, more so than normal-hearing individuals.

View Article and Find Full Text PDF

Energy balance is centrally regulated by the brain through several interacting neuronal systems involving external, peripheral, and central factors within the brain. The hypothalamus integrates these factors and is the key brain area in the regulation of energy balance. In this review, we will explain the structure of the hypothalamus and its role in the regulation of energy balance.

View Article and Find Full Text PDF

The hypothalamus has been suggested to be important in the initiation cascade of migraine attacks based on clinical and biochemical observations. Previous imaging studies could not disentangle the changes due to the attack and those due to the trigger compound. With a novel approach, we assessed hypothalamic neuronal activity in early premonitory phases of glyceryl-trinitrate (GTN)-induced and spontaneous migraine attacks.

View Article and Find Full Text PDF

An interesting problem for the human saccadic eye-movement system is how to deal with the degrees-of-freedom problem: the six extra-ocular muscles provide three rotational degrees of freedom, while only two are needed to point gaze at any direction. Measurements show that 3D eye orientations during head-fixed saccades in far-viewing conditions lie in Listing's plane (LP), in which the eye's cyclotorsion is zero (Listing's law, LL). Moreover, while saccades are executed as single-axis rotations around a stable eye-angular velocity axis, they follow straight trajectories in LP.

View Article and Find Full Text PDF

Although moving sound-sources abound in natural auditory scenes, it is not clear how the human brain processes auditory motion. Previous studies have indicated that, although ocular localization responses to stationary sounds are quite accurate, ocular smooth pursuit of moving sounds is very poor. We here demonstrate that human subjects faithfully track a sound's unpredictable movements in the horizontal plane with smooth-pursuit responses of the head.

View Article and Find Full Text PDF

The latency of the auditory steady-state response (ASSR) may provide valuable information regarding the integrity of the auditory system, as it could potentially reveal the presence of multiple intracerebral sources. To estimate multiple latencies from high-order ASSRs, we propose a novel two-stage procedure that consists of a nonparametric estimation method, called apparent latency from phase coherence (ALPC), followed by a heuristic sequential forward selection algorithm (SFS). Compared with existing methods, ALPC-SFS requires few prior assumptions, and is straightforward to implement for higher-order nonlinear responses to multi-cosine sound complexes with their initial phases set to zero.

View Article and Find Full Text PDF

To program a goal-directed response in the presence of acoustic reflections, the audio-motor system should suppress the detection of time-delayed sources. We examined the effects of spatial separation and interstimulus delay on the ability of human listeners to localize a pair of broadband sounds in the horizontal plane. Participants indicated how many sounds were heard and where these were perceived by making one or two head-orienting localization responses.

View Article and Find Full Text PDF

Several studies have demonstrated the advantages of the bilateral vs. unilateral cochlear implantation in listeners with bilateral severe to profound hearing loss. However, it remains unclear to what extent bilaterally implanted listeners have access to binaural cues, e.

View Article and Find Full Text PDF