Publications by authors named "Oppermann F"

The vibrational motion of molecules represents a fundamental example of an anharmonic oscillator. Using a prototype molecular system, HeH^{+}, we demonstrate that appropriate laser pulses make it possible to drive the nuclear motion in the anharmonic potential of the electronic ground state, increasing its energy above the potential barrier and facilitating dissociation by purely vibrational excitation. We find excellent agreement between the frequency-dependent response of the helium hydride molecular cation to both classical and quantum mechanical simulations, thus removing any ambiguities through electronic excitation.

View Article and Find Full Text PDF

The activity of the SMN complex in promoting the assembly of pre-mRNA processing UsnRNPs correlates with condensation of the complex in nuclear Cajal bodies. While mechanistic details of its activity have been elucidated, the molecular basis for condensation remains unclear. High SMN complex phosphorylation suggests extensive regulation.

View Article and Find Full Text PDF

The laser-induced fragmentation dynamics of this most fundamental polar molecule HeH^{+} are measured using an ion beam of helium hydride and an isotopologue at various wavelengths and intensities. In contrast to the prevailing interpretation of strong-field fragmentation, in which stretching of the molecule results primarily from laser-induced electronic excitation, experiment and theory for nonionizing dissociation, single ionization, and double ionization both show that the direct vibrational excitation plays the decisive role here. We are able to reconstruct fragmentation pathways and determine the times at which each ionization step occurs as well as the bond length evolution before the electron removal.

View Article and Find Full Text PDF
Article Synopsis
  • Deubiquitinating enzymes (DUBs), like ataxin-3, are crucial for maintaining protein balance and play a role in neurodegenerative diseases, specifically spinocerebellar ataxia type 3 (SCA3).
  • In SCA3, an expanded polyglutamine (polyQ) sequence in ataxin-3 causes protein aggregation, leading to neuronal issues.
  • Mass spectrometry revealed that both normal and polyQ-expanded ataxin-3 interact with proteins involved in protein quality control and mitochondria, with certain mitochondrial proteins showing increased interactions in the expanded version, highlighting ataxin-3's importance in both ubiquitin and mitochondrial biology.
View Article and Find Full Text PDF

Genetic variation in the leucine-rich repeat kinase 2 (LRRK2) gene is associated with risk of familial and sporadic Parkinson's disease (PD). To support clinical development of LRRK2 inhibitors as disease-modifying treatment in PD biomarkers for kinase activity, target engagement and kinase inhibition are prerequisite tools. In a combined proteomics and phosphoproteomics study on human peripheral mononuclear blood cells (PBMCs) treated with the LRRK2 inhibitor Lu AF58786 a number of putative biomarkers were identified.

View Article and Find Full Text PDF

Naming a picture is slower in categorically related compared with unrelated contexts, an effect termed semantic interference. This effect has informed the development of all contemporary models of lexical access in speech production. However, category members typically share visual features, so semantic interference might in part reflect this confound.

View Article and Find Full Text PDF

Ubiquitination and phosphorylation of proteins represent post translational modifications (PTMs) capable of regulating a variety of cellular processes. In the neurodegenerative disorder spinocerebellar ataxia type 3 (SCA3), the disease causing protein ataxin-3 carries an expanded polyglutamine (polyQ) stretch causing it to aggregate in nuclear inclusions. These inclusions are decorated with ubiquitin suggestive of a malfunction in the clearance of the mutant protein.

View Article and Find Full Text PDF

The organization of visual processing into a coarse-to-fine information processing based on the spatial frequency properties of the input forms an important facet of the object recognition process. During visual object categorization tasks, microsaccades occur frequently. One potential functional role of these eye movements is to resolve high spatial frequency information.

View Article and Find Full Text PDF

This study investigated to what extent advance planning during sentence production is affected by a concurrent cognitive load. In two picture-word interference experiments in which participants produced subject-verb-object sentences while ignoring auditory distractor words, we assessed advance planning at a phonological (lexeme) and at an abstract-lexical (lemma) level under visuospatial or verbal working memory (WM) load. At the phonological level, subject and object nouns were found to be activated before speech onset with concurrent visuospatial WM load, but only subject nouns were found to be activated with concurrent verbal WM load, indicating a reduced planning scope as a function of type of WM load (Experiment 1).

View Article and Find Full Text PDF

Previous dual-task picture-naming studies suggest that lexical processes require capacity-limited processes and prevent other tasks to be carried out in parallel. However, studies involving the processing of multiple pictures suggest that parallel lexical processing is possible. The present study investigated the specific costs that may arise when such parallel processing occurs.

View Article and Find Full Text PDF

The survival motor neuron (SMN) complex is a macromolecular machine comprising 9 core proteins: SMN, Gemins2-8 and unrip in vertebrates. It performs tasks in RNA metabolism including the cytoplasmic assembly of spliceosomal small nuclear ribonucleoprotein particles (snRNPs). The SMN complex also localizes to the nucleus, where it accumulates in Cajal Bodies (CB) and may function in transcription and/or pre-mRNA splicing.

View Article and Find Full Text PDF

Advances in mass spectrometric methodology and instrumentation have promoted a continuous increase in analytical performance in the field of phosphoproteomics. Here, we employed the recently introduced quadrupole Orbitrap (Q Exactive) mass spectrometer for quantitative signaling analysis to a depth of more than 15 000 phosphorylation sites. In parallel to the commonly used SILAC approach, we evaluated the nonisobaric chemical labeling reagent mTRAQ as an alternative quantification technique.

View Article and Find Full Text PDF

Naming an object in the context of other objects requires the selection and processing of the target object at different levels, while the processing of competing representations activated by context objects has to be constrained. At what stage are these competing representations attenuated? To address this question, we presented pairs of target and context objects that were either similar in visual shape (e.g.

View Article and Find Full Text PDF

Recently, Meyer, Belke, Telling and Humphreys (2007) reported that competitor objects with homophonous names (e.g., boy) interfere with identifying a target object (e.

View Article and Find Full Text PDF

Targeted drugs are less toxic than traditional chemotherapeutic therapies; however, the proportion of patients that benefit from these drugs is often smaller. A marker that confidently predicts patient response to a specific therapy would allow an individual therapy selection most likely to benefit the patient. Here, we used quantitative mass spectrometry to globally profile the basal phosphoproteome of a panel of non-small cell lung cancer cell lines.

View Article and Find Full Text PDF

Delineation of phosphorylation-based signaling networks requires reliable data about the underlying cellular kinase-substrate interactions. We report a chemical genetics and quantitative phosphoproteomics approach that encompasses cellular kinase activation in combination with comparative replicate mass spectrometry analyses of cells expressing either inhibitor-sensitive or resistant kinase variant. We applied this workflow to Plk1 (Polo-like kinase 1) in mitotic cells and induced cellular Plk1 activity by wash-out of the bulky kinase inhibitor 3-MB-PP1, which targets a mutant kinase version with an enlarged catalytic pocket while not interfering with wild-type Plk1.

View Article and Find Full Text PDF

The human cognitive system is highly efficient in extracting information from our visual environment. This efficiency is based on acquired knowledge that guides our attention toward relevant events and promotes the recognition of individual objects as they appear in visual scenes. The experience-based representation of such knowledge contains not only information about the individual objects but also about relations between them, such as the typical context in which individual objects co-occur.

View Article and Find Full Text PDF

In 3 picture-word interference experiments, speakers named a target object in the presence of an unrelated not-to-be-named context object. Distractor words, which were phonologically related or unrelated to the context object's name, were used to determine whether the context object had become phonologically activated. All objects had high frequency names, and the ease of processing of these objects was manipulated by a visual degradation technique.

View Article and Find Full Text PDF

The semantic interference effect in the picture-word interference task is interpreted as an index of lexical competition in prominent speech production models. Janssen, Schirm, Mahon, and Caramazza (2008) challenged this interpretation on the basis of experiments with a novel version of this task, which introduced a task-switching component. Participants either named the picture or read the word, depending on the word's color.

View Article and Find Full Text PDF

Inhibition of deregulated protein kinases by small molecule drugs has evolved into a major therapeutic strategy for the treatment of human malignancies. Knowledge about direct cellular targets of kinase-selective drugs and the identification of druggable downstream mediators of oncogenic signaling are relevant for both initial therapy selection and the nomination of alternative targets in case molecular resistance emerges. To address these issues, we performed a proof-of-concept proteomics study designed to monitor drug effects on the pharmacologically tractable subproteome isolated by affinity purification with immobilized, nonselective kinase inhibitors.

View Article and Find Full Text PDF

The innate immune system senses invariant microbial components via toll-like receptors (TLRs) to elicit a host defense program against invading pathogens. Lipopolysaccharide (LPS), a constituent of Gram-negative bacteria, is recognized by TLR4 and triggers protein kinase signaling to orchestrate immune responses such as inflammatory cytokine production. To analyze kinase-proximal signaling in murine macrophages, we performed prefractionation experiments with immobilized kinase inhibitors to enrich for protein kinases and their interaction partners.

View Article and Find Full Text PDF

In a picture-word interference experiment the authors demonstrate that a semantic-categorical relation between a to-be-named target picture and a context picture promotes the phonological activation of the to-be-ignored context picture. No such phonological activation is observed if the objects are semantically unrelated. This finding gives further insight into the mechanisms that modulate the activation flow in the conceptual-lexical system during speech planning.

View Article and Find Full Text PDF

Members of the human protein kinase superfamily are the major regulatory enzymes involved in the activity control of eukaryotic signal transduction pathways. As protein kinases reside at the nodes of phosphorylation-based signal transmission, comprehensive analysis of their cellular expression and site-specific phosphorylation can provide important insights into the architecture and functionality of signaling networks. However, in global proteome studies, low cellular abundance of protein kinases often results in rather minor peptide species that are occluded by a vast excess of peptides from other cellular proteins.

View Article and Find Full Text PDF