Political partisanship might lead educated adults-even the highly numerate-to reason selectively about numbers that are relevant to and support their ideology ("motivated numeracy"). In this pre-registered study, we sought to examine the replicability of motivated numeracy, and investigate whether cognitive support (number lines) that improves the reasoning of children might also improve the reasoning of political partisans. To test this, we asked 1000 adults about their political ideology and asked them to interpret fictional data, in a table or number-line format, about ideology relevant (i.
View Article and Find Full Text PDFFractions are the gatekeepers to advanced mathematics but are difficult to learn. One powerful learning mechanism is analogy, which builds fraction understanding on a pre-existing foundation of integer knowledge. Indeed, a short intervention that aligned fractions and integers on number lines improved children's estimates of fractions (Yu et al.
View Article and Find Full Text PDFChildren display an early sensitivity to implicit proportions (e.g., 1 of 5 apples vs.
View Article and Find Full Text PDFTo characterize numerical representations, the number-line task asks participants to estimate the location of a given number on a line flanked with zero and an upper-bound number. An open question is whether estimates for symbolic numbers (e.g.
View Article and Find Full Text PDFClarke and Beck import certain assumptions about the nature of numbers. Although these are widespread within research on number cognition, they are highly contentious among philosophers of mathematics. In this commentary, we isolate and critically evaluate one core assumption: the identity thesis.
View Article and Find Full Text PDFPerceptual judgments result from a dynamic process, but little is known about the dynamics of number-line estimation. A recent study proposed a computational model that combined a model of trial-to-trial changes with a model for the internal scaling of discrete numbers. Here, we tested a surprising prediction of the model-a situation in which children's estimates of numerosity would be better than those of adults.
View Article and Find Full Text PDFChinese children routinely outperform American peers in standardized tests of mathematics knowledge. To examine mediators of this effect, 95 Chinese and US 5-year-olds completed a test of overall symbolic arithmetic, an IQ subtest, and three tests each of symbolic and non-symbolic numerical magnitude knowledge (magnitude comparison, approximate addition, and number-line estimation). Overall Chinese children performed better in symbolic arithmetic than US children, and all measures of IQ and number knowledge predicted overall symbolic arithmetic.
View Article and Find Full Text PDFKim and Opfer (2017) found that number-line estimates increased approximately logarithmically with number when an upper bound (e.g., 100 or 1000) was explicitly marked (bounded condition) and when no upper bound was marked (unbounded condition).
View Article and Find Full Text PDFSubstantial evidence has suggested that reading and math are supported by executive processes (EP). However, to date little is known about which portion of the neural system underpinning domain-general executive skills works to support reading and math. In this study, we aimed to answer this question using fMRI via two complementary approaches.
View Article and Find Full Text PDFTo better characterize the neural correlates of the full spectrum of reading ability, this fMRI study examined how variations in reading ability correlate with task-based brain activity during reading among a large community sample of adolescents (N = 234). In addition, complimentary approaches taking advantage of empirical as well as independent meta-analytic information were employed to isolate neural substrates of domain-general executive processes that are predictive of reading ability. Age-related differences in brain activity were also examined.
View Article and Find Full Text PDFThe Strategy Choice Model (SCM) is a highly influential theory of human problem-solving. One strength of this theory is the allowance for both item and person variance to contribute to problem-solving outcomes, but this central tenet of the model has not been empirically tested. Explanatory Item Response Theory (EIRT) provides an ideal approach to testing this core feature of SCM, as it allows for simultaneous estimation of both item and person effects on problem-solving outcomes.
View Article and Find Full Text PDFMemory for numbers improves with age. One source of this improvement may be learning linear spatial-numeric associations, but previous evidence for this hypothesis likely confounded memory span with quality of numerical magnitude representations and failed to distinguish spatial-numeric mappings from other numeric abilities, such as counting or number word-cardinality mapping. To obviate the influence of memory span on numerical memory, we examined 39 3- to 5-year-olds' ability to recall one spontaneously produced number (1-20) after a delay, and the relation between numeric recall (controlling for non-numeric recall) and quality of mapping between symbolic and non-symbolic quantities using number-line estimation, give-a-number estimation, and counting tasks.
View Article and Find Full Text PDFBackground: The number line task assesses the ability to estimate numerical magnitudes. People vary greatly in this ability, and this variability has been previously associated with mathematical skills. However, the sources of individual differences in number line estimation and its association with mathematics are not fully understood.
View Article and Find Full Text PDFYoung children's estimates of numerical magnitude increase approximately logarithmically with actual magnitude. The conventional interpretation of this finding is that children's estimates reflect an innate logarithmic encoding of number. A recent set of findings, however, suggests that logarithmic number-line estimates emerge via a dynamic encoding mechanism that is sensitive to previously encountered stimuli.
View Article and Find Full Text PDFAutomatic and accurate detection of positive and negative nuclei from images of immunostained tissue biopsies is critical to the success of digital pathology. The evaluation of most nuclei detection algorithms relies on manually generated ground truth prepared by pathologists, which is unfortunately time-consuming and suffers from inter-pathologist variability. In this work, we developed a digital immunohistochemistry (IHC) phantom that can be used for evaluating computer algorithms for enumeration of IHC positive cells.
View Article and Find Full Text PDFThe theory of evolution by natural selection has begun to revolutionize our understanding of perception, cognition, language, social behavior, and cultural practices. Despite the centrality of evolutionary theory to the social sciences, many students, teachers, and even scientists struggle to understand how natural selection works. Our goal is to provide a field guide for social scientists on teaching evolution, based on research in cognitive psychology, developmental psychology, and education.
View Article and Find Full Text PDFThe authors rightly point to the theoretical importance of interactions of space and number through the life span, yet propose a theory with several weaknesses. In addition to proclaiming itself unfalsifiable, its stage-like format and emphasis on the role of selective attention are at odds with what is known about the development of spatial-numerical associations in infancy.
View Article and Find Full Text PDFIndividual differences in number sense correlate with mathematical ability and performance, although the presence and strength of this relationship differs across studies. Inconsistencies in the literature may stem from heterogeneity of number sense and mathematical ability constructs. Sample characteristics may also play a role as changes in the relationship between number sense and mathematics may differ across development and cultural contexts.
View Article and Find Full Text PDFRepresentations of numerical value have been assessed by using bounded (e.g., 0-1,000) and unbounded (e.
View Article and Find Full Text PDFFront Psychol
February 2016
Memory for numbers improves with age and experience. One potential source of improvement is a logarithmic-to-linear shift in children's representations of magnitude. To test this, Kindergartners and second graders estimated the location of numbers on number lines and recalled numbers presented in vignettes (Study 1).
View Article and Find Full Text PDFChildren's number-line estimation has produced a lively debate about representational change, supported by apparently incompatible data regarding descriptive adequacy of logarithmic (Opfer, Siegler, & Young, 2011) and cyclic power models (Slusser, Santiago, & Barth, 2013). To test whether methodological differences might explain discrepant findings, we created a fully crossed 2×2 design and assigned 96 children to one of four cells. In the design, we crossed anchoring (free, anchored) and sampling (over-, even-), which were candidate factors to explain discrepant findings.
View Article and Find Full Text PDFPrevious work has identified a distributed network of neural systems involved in appraising the value of rewards, such as when winning $100 versus $1. These studies, however, confounded monetary value and the number used to represent it, which leads to the possibility that some elements in the network may be specialized for processing numeric rather than monetary value. To test this hypothesis, we manipulated numeric magnitude and units to construct a range of economic rewards for simple decisions (e.
View Article and Find Full Text PDFIntegrin heterodimeric cell adhesion and signaling receptors bind ligands of the extracellular matrix and relay signals bidirectionally across cell membranes. Thereby, integrins adopt multiple conformational and functional states that control ligand binding affinity and linkage to cytosolic/cytoskeletal proteins. Here, we designed an integrin chimera encompassing the strongly dimerizing transmembrane domain (TMD) of glycophorin A (GpA) in the context of the otherwise unaltered integrin αvβ3.
View Article and Find Full Text PDFAdhesion of metastasizing prostate carcinoma cells was quantified for two carcinoma model cell lines LNCaP (lymph node-specific) and PC3 (bone marrow-specific). By time-lapse microscopy and force spectroscopy we found PC3 cells to preferentially adhere to bone marrow-derived mesenchymal stem cells (SCP1 cell line). Using atomic force microscopy (AFM) based force spectroscopy, the mechanical pattern of the adhesion to SCP1 cells was characterized for both prostate cancer cell lines and compared to a substrate consisting of pure collagen type I.
View Article and Find Full Text PDF