Rheumatoid arthritis (RA) is an autoimmune disease in which a variety of circulating pro-inflammatory cells and dysregulated molecules are involved in disease aetiology and progression. Platelets are an important cellular element in the circulation that can bind several dysregulated molecules (such as collagen, thrombin and fibrinogen) that are present both in the synovium and the circulation of patients with RA. Platelets not only respond to dysregulated molecules in their environment but also transport and express their own inflammatory mediators, and serve as regulators at the boundary between haemostasis and immunity.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
December 2017
The inflammatory burden of the complex rheumatoid arthritis (RA) disease affects several organ-systems, including rheological properties of blood and its formed elements. Red blood cells (RBCs) are constantly exposed to circulating dysregulated inflammatory molecules that are co-transported within the vasculature; and their membranes may be particularly vulnerable to the accompanying oxidative stress. In the current study, we investigate biophysical and ultrastructural characteristics of RBCs obtained from a cohort of patients using atomic force microscopy (AFM), scanning electron microscopy (SEM) and confocal microscopy (CM).
View Article and Find Full Text PDFThe relevance of erythrocyte light microscopy analysis (a well-known haematological method) is under the spotlight, however there is a place for innovative electron microscopy, (together with biochemical markers) in a pathology laboratory. Inflammation is a key indicator of the health status and erythrocytes are extremely sensitive to oxidative stress or cytokine upregulation, which typically accompany systemic inflammation in most diseases. They are probably the most adaptable cells, and due to their short lifespan, may form a vital indicator of health, and could play a central part in tracking disease and treatment.
View Article and Find Full Text PDFAdult rheumatoid arthritis (RA) is an autoimmune disorder affecting joints and frequently characterised by initial local and later systemic inflammation. Researchers have, for many years, traced its cause to diverse genetic, environmental and especially immunological responses that work against the body's own cells and tissues. Investigation into several of these biomarkers reveals interconnections that exist between multiple factors, which ultimately lead to specific pathologies.
View Article and Find Full Text PDFCytokines, lymphocytes, platelets and several biomolecules have long been implicated in the pathology of rheumatoid arthritis (RA), and the influences of antibody production and tagging, and cytokine, chemokine and enzyme production at specific rheumatoid joints were thought to be exclusive to the advancement of disease parameters. Another role player in RA is red blood cells (RBCs) which, of late, have been found to be involved in RA pathobiology, as there is a positive correlation between RBC counts and joint pathology, as well as with inflammatory biomarkers in the disease. There is also an association between RBC distribution width and the incidence of myocardial infarction amongst RA patients, and there is a change in the lipid distribution within RBC membranes.
View Article and Find Full Text PDF