General control nonderepressible 5 protein (Gcn5) and its homologs, including p300/CBP-associated factor (PCAF), are lysine acetyltransferases that modify both histone and non-histone proteins using acetyl coenzyme A as a donor substrate. While decades of studies have uncovered a vast network of cellular processes impacted by these acetyltransferases, including gene transcription and metabolism, far less is known about how these enzymes are themselves regulated. In this review, we summarize the type and functions of posttranslational modifications proposed to control Gcn5 in both yeast and human cells.
View Article and Find Full Text PDFPIF1 family helicases are evolutionarily conserved among prokaryotes and eukaryotes. These enzymes function to support genome integrity by participating in multiple DNA transactions that can be broadly grouped into DNA replication, DNA repair, and telomere maintenance roles. However, the levels of PIF1 activity in cells must be carefully controlled, as Pif1 over-expression in Saccharomyces cerevisiae is toxic, and knockdown or over-expression of human PIF1 (hPIF1) supports cancer cell growth.
View Article and Find Full Text PDFIn , the Pif1 helicase functions in both nuclear and mitochondrial DNA replication and repair processes, preferentially unwinding RNA:DNA hybrids and resolving G-quadruplex structures. We sought to determine how the various activities of Pif1 are regulated Here, we report lysine acetylation of nuclear Pif1 and demonstrate that it influences both Pif1's cellular roles and core biochemical activities. Using Pif1 overexpression toxicity assays, we determined that the acetyltransferase NuA4 and deacetylase Rpd3 are primarily responsible for the dynamic acetylation of nuclear Pif1.
View Article and Find Full Text PDFCellular proteins are modified by lysine acetylation wherein an acetyltransferase transfers an acetyl group from acetyl co enzyme A onto the e-amino group of lysine residues. This modification is extremely dynamic and can be reversed by a deacetylase that removes the acetyl group. Addition of acetyl group to the lysine residue neutralizes its positive charge, thereby functioning as a molecular switch in regulating the enzymatic functions of the protein, its stability, and it cellular localization.
View Article and Find Full Text PDFProtein lysine acetylation is a reversible posttranslational modification that is catalyzed by a group of enzymes that are collectively referred to as lysine (K) acetyltransferases (KATs). These enzymes catalyze the transfer of the acetyl group from acetyl coenzyme A (Ac-CoA) to the ε-amino group of lysine amino acid. Protein lysine acetylation plays a critical role in the regulation of important cellular processes and it is therefore paramount that we understand the catalytic mechanisms of these enzymes.
View Article and Find Full Text PDF