Publications by authors named "Onyeaju M"

Owing to the devise applications of molecules in industries, the bound state solution of the non-relativistic wave equation with a molecular potential function has been obtained in a closed-form using the Nikiforov-Uvarov method. The solutions of the bound state are then applied to study the information-theoretic measures such as the one-dimensional Shannon and Renyi entropic densities. The expectation values for the position and momentum spaces were obtained to verify the Heisenberg's uncertainty principle.

View Article and Find Full Text PDF

Since the proposition of the standard form of Morse potential [Formula: see text] model over the years, there has not been much attention on the potential. Its application to different studies such as the thermodynamic properties and information theory are yet to be reported to the best of our understanding. In this study, the solutions of the radial Schrödinger equation for the standard Morse potential is obtained using supersymmetric approach.

View Article and Find Full Text PDF

In this work, we determined an approximate eigen solutions of Modified multi-parameter exponential potential using supersymmetric quantum mechanics approach (SUSY) with improved Greene-Aldrich approximation to the centrifugal term. The energy equation and its corresponding normalised radial wave function were fully obtained. The proposed potential reduces to other useful potentials like Rosen-Morse, Hellmann, Yukawa and Coulomb potential as special cases.

View Article and Find Full Text PDF

A shifted Morse potential model is modified to fit the study of the vibrational energies of some molecules. Using a traditional technique/methodology, the vibrational energy and the un-normalized radial wave functions were calculated for the modified shifted Morse potential model. The condition that fits the modified potential for molecular description were deduced together with the expression for the screening parameter.

View Article and Find Full Text PDF

A molecular potential model is proposed and the solutions of the radial Schrӧdinger equation in the presence of the proposed potential is obtained. The energy equation and its corresponding radial wave function are calculated using the powerful parametric Nikiforov-Uvarov method. The energies of cesium dimer for different quantum states were numerically obtained for both negative and positive values of the deformed and adjustable parameters.

View Article and Find Full Text PDF

The solution of the radial Schrödinger equation was obtained using the methodology of supersymmetric approach with a combination of modified generalized Pöschl-Teller potential and inversely quadratic Yukawa potential model. The non-relativistic ro-vibrational energy spectra and the corresponding wave functions were obtained and numerical results were generated for some states. The variation of energy of the combined potential and the subsets potentials with the screening parameter for various quantum number were graphically studied.

View Article and Find Full Text PDF

An approximate solutions of the radial Schrödinger equation was obtained under a modified Tietz-Hua potential via supersymmetric approach. The effect of the modified parameter and optimization parameter respectively on energy eigenvalues were graphically and numerically examined. The comparison of the energy eigenvalues of modified Tietz-Hua potential and the actual Tietz-Hua potential were examined.

View Article and Find Full Text PDF

An approximate solution of the one-dimensional relativistic Klein-Gordon equation was obtained under the interaction of an improved expression for Wei potential energy function. The solution of the non-relativistic Schrödinger equation was obtained from the solution of the relativistic Klein-Gordon equation by certain mappings. We have calculated Fisher information for position space and momentum space via the computation of expectation values.

View Article and Find Full Text PDF

The approximate analytical solutions of the three-dimensional radial Schrödinger wave equation with a multiple potential function has been studied using a suitable approximation scheme to the centrifugal term in the framework of parametric Nikiforov-Uvarov method. The energy equation and the wave function were obtained. The calculated wave function was used to study Shannon entropy and variance via expectation values.

View Article and Find Full Text PDF

We solved the Schrödinger equation with the modified Mobius square potential model using the modified factorization method. Within the framework of the Greene-Aldrich approximation for the centrifugal term and using a suitable transformation scheme, we obtained the energy eigenvalues equation and the corresponding eigenfunction in terms of the hypergeometric function. Using the resulting eigenvalues equation, we calculated the vibrational partition function and other relevant thermodynamic properties.

View Article and Find Full Text PDF