An external-cavity Raman laser with a BaWO(4) crystal is reported to generate a high-brightness, mid-infrared output at 2.6 μm. An actively Q-switched Ho:YAG laser at 2.
View Article and Find Full Text PDFWe experimentally demonstrate selective control of the Q and transmission of an individual resonance of an optical microcavity by optically controlling its intracavity loss via inverse Raman scattering. A strongly overcoupled resonance is brought into critical coupling with continuous tuning of the on-resonance transmission by >9 dB and reduction of the intrinsic Q factor by more than a factor of five. Adjacent resonances experience minimal disturbance and can be selectively controlled by tuning the control beam to the appropriate control resonance.
View Article and Find Full Text PDFWe demonstrate the generation of broad-bandwidth optical frequency combs from a CMOS-compatible integrated microresonator. We characterize the comb quality using a novel self-referencing method and verify that the comb line frequencies are equidistant over a bandwidth of 115 nm (14.5 THz), which is nearly an order of magnitude larger than previous measurements.
View Article and Find Full Text PDFWe demonstrate a simple, all-optical, fiber-based method for characterizing the spectral amplitude and phase of ultrafast pulses using a differential tomographic measurement realized via four-wave mixing. The technique is applied to subpicosecond pulses in the C-band of the telecommunication spectrum. Characterization of amplified pulses and propagation through dispersive media is demonstrated and compared with autocorrelation measurements and calculated predictions.
View Article and Find Full Text PDFWe theoretically investigate a wavelength-selective all-optical switch using Raman-induced loss in a silicon resonator add-drop filter. We show that picojoule control pulses can selectively modulate and "erase" a single cavity resonance from full extinction to greater than 97% transmission while leaving adjacent resonances undisturbed. Full switching is achievable in less than 300 ps with only a few hundred femtojoule energy dissipation.
View Article and Find Full Text PDFWe demonstrate a temporal imaging system based on parametric mixing that allows simple triggering from an external clock by using a time-lens-based pump laser. We integrate our temporal imaging system into a time-to-frequency measurement scheme and demonstrate the ability to perform characterization of temporal waveforms with 1.4-ps resolution and a 530-ps record length.
View Article and Find Full Text PDFWe experimentally demonstrate wavelength-preserving spectral phase conjugation for compensating chromatic dispersion and self-phase modulation in optical fibers. Our implementation is based on a temporal imaging scheme that uses time lenses realized by broadband four-wave mixing in silicon waveguides. By constructing a temporal analog of a 4-f imaging system, we compensate for pulse distortions arising from second- and third-order dispersion and self-phase modulation in optical fibers.
View Article and Find Full Text PDFWe demonstrate a technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time-resolved single-photon detection by femtosecond up-conversion. We measure for the first time the joint temporal density of a two-photon entangled state, showing clearly the time anticorrelation of the coincident-frequency entangled photon pair generated by ultrafast spontaneous parametric down-conversion under extended phase-matching conditions. The new technique enables us to manipulate the frequency entanglement by varying the down-conversion pump bandwidth to produce a nearly unentangled two-photon state that is expected to yield a heralded single-photon state with a purity of 0.
View Article and Find Full Text PDFWe demonstrate a time-resolved single-photon detection technique based on ultrafast sum-frequency generation, providing femtosecond measurement capability for single photons in photonic quantum information processing. Noncollinear broadband upconversion in periodically poled MgO-doped stoichiometric lithium tantalate with an ultrafast pump and detection with a Si single-photon counter enable efficient detection of IR photons and temporal resolution of ~150 fs. We utilize the timing resolution to map the generation efficiency profile along the propagation axis of a periodically poled KTiOPO(4) crystal, revealing its local grating quality with millimeter resolution.
View Article and Find Full Text PDFWe demonstrate a high-power, narrowband pulsed source at 390 nm by two stages of frequency doubling in periodically poled MgO:LiNbO(3) and periodically poled KTiOPO(4) of an amplified, passively mode-locked fiber laser. With a frequency quadrupling efficiency of 5.5% and a 0.
View Article and Find Full Text PDFWe demonstrate a new class of frequency-entangled states generated via spontaneous parametric down-conversion under extended phase-matching conditions. Biphoton entanglement with coincident signal and idler frequencies is observed over a broad bandwidth in periodically poled KTiOPO4. We demonstrate high visibility in Hong-Ou-Mandel interferometric measurements under pulsed pumping without spectral filtering, which indicates excellent frequency indistinguishability between the down-converted photons.
View Article and Find Full Text PDF