Many mechanisms are thought to play a role in the pathogenesis of the COVID-19 pandemic, which started in 2019 and affected the whole world. It has been claimed that a deficiency in the immune system can significantly affect the severity of COVID-19 disease. It is important that the levels of essential elements and vitamin D are at certain levels for the healthy functioning of the immune system.
View Article and Find Full Text PDFColloidal quantum dots (QDs) offer high color purity essential to high-quality liquid crystal displays (LCDs), which enables unprecedented levels of color enrichment in LCD-TVs today. However, for LCDs requiring polarized backplane illumination in operation, highly polarized light generation using inherently isotropic QDs remains a fundamental challenge. Here, we show strongly polarized color conversion of isotropic QDs coupled to Fano resonances of v-grooved surfaces compatible with surface-normal LED illumination for next-generation QD-TVs.
View Article and Find Full Text PDFSemiconductor lead halide perovskites are excellent candidates for realizing low threshold light amplification due to their tunable and highly efficient luminescence, ease of processing, and strong light-matter interactions. However, most studies on optical gain have addressed bulk films, nanowires, or nanocrystals that exhibit little or no size quantization. Here, we show by means of a multitude of optical spectroscopy methods that small CsPbBr nanocrystals (NCs) exhibit a progressive red shift of the band-edge transition upon addition of electron-hole pairs, at least one carrier of which occupies a 2-fold degenerate, delocalized state in agreement with strong confinement.
View Article and Find Full Text PDFOne of the studies on new drug delivery and release systems that has increased in recent years is the study using plasmonic nanoparticles. In this study, polydopamine nanoparticles (PDOP NPs), which contribute to photothermal drug release by near infrared radiation (NIR), were decorated with gold nanoparticles (AuNPs) to utilize their plasmonic properties, and a core-satellite-like system was formed. With this approach, epirubicin (EPI)-loaded PDOP NPs were prepared by utilizing the plasmonic properties of AuNPs.
View Article and Find Full Text PDFChronic kidney disease (CKD), a common progressive renal failure characterized by the permanent loss of functional nephrons can rapidly progress to end-stage renal disease, which is known to be an irreversible renal failure. In the therapy of ESRD, there are controversial suggestions about the use of regular dialysis, since it is claimed to increase oxidative stress, which may increase mortality in patients. In ESRD, oxidative-stress-related DNA damage is expected to occur, along with increased inflammation.
View Article and Find Full Text PDFSemiconductor colloidal quantum wells (CQWs) provide anisotropic emission behavior originating from their anisotropic optical transition dipole moments (TDMs). Here, solution-processed colloidal quantum well light-emitting diodes (CQW-LEDs) of a single all-face-down oriented self-assembled monolayer (SAM) film of CQWs that collectively enable a supreme level of IP TDMs at 92% in the ensemble emission are shown. This significantly enhances the outcoupling efficiency from 22% (of standard randomly-oriented emitters) to 34% (of face-down oriented emitters) in the LED.
View Article and Find Full Text PDFPhytochemical compounds, such as naringin and berberine, have been used for many years due to their antioxidant activities, and consequently, beneficial health effects. In this study, it was aimed to evaluate the antioxidant properties of naringin, berberine and poly(methylmethacrylate) (PMMA) nanoparticles (NPs) encapsulated with naringin or berberine and their possible cytotoxic, genotoxic, and apoptotic effects on mouse fibroblast (NIH/3 T3) and colon cancer (Caco-2) cells. According to the results of the study, it was found that the 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition antioxidant activity of naringin, berberine, and naringin or berberine encapsulated PMMA NPs, was significantly increased at higher tested concentrations due to the antioxidant effects of naringin, berberine and naringin or berberine encapsulated PMMA NPs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
For their unique optical properties, quantum dots (QDs) have been extensively used as light emitters in a number of photonic and optoelectronic applications. They even met commercialization success through their implementation in high-end displays with unmatched brightness and color rendering. For such applications, however, QDs must be shielded from oxygen and water vapor, which are known to degrade their optical properties over time.
View Article and Find Full Text PDFMoxifloxacin (MOX) is an important antibiotic commonly used in the treatment of recurrent infections. The aim of this study was to investigate its antibacterial efficiency when used with solid lipid nanoparticles (SNLs) and nanostructured lipid carriers (NLCs) as delivery vehicles. For this purpose we designed two SLNs (SLN1 and SLN2) and two NLCs (NLC1 and NLC2) of different characteristics (particle size, size distribution, zeta potential, and encapsulation efficiency) and loaded them with MOX to determine its release, antibacterial activity against , and their cytotoxicity to the RAW 264.
View Article and Find Full Text PDFAlthough achieving optical gain using aqueous solutions of colloidal nanocrystals as a gain medium is exceptionally beneficial for bio-optoelectronic applications, the realization of optical gain in an aqueous medium using solution-processed nanocrystals has been extremely challenging because of the need for surface modification to make nanocrystals water dispersible while still maintaining their gain. Here, we present the achievement of optical gain in an aqueous medium using an advanced architecture of CdSe/CdS@CdZnS core/crown@gradient-alloyed shell colloidal quantum wells (CQWs) with an ultralow threshold of ∼3.4 μJ cm and an ultralong gain lifetime of ∼2.
View Article and Find Full Text PDFThe diagnosis and treatment of the diseases in a certain coordination is a subject that has been emphasized in recent years. Theragnostics approaches allow simultaneous diagnosis and treatment of chronic diseases such as cancer. An ideal theragnostic should be biocompatible and can be used safely in humans.
View Article and Find Full Text PDFThis study aims to determine the radiation doses of patients and staff during different interventional radiology and cardiology examinations. Dose measurements for interventional radiology examinations were performed in Ibn-i Sina Hospital of Ankara University using Siemens Artis-Zee medical imaging system. Patient dose measurement was carried out for interventional cardiology examinations in Cardiology Department of TOBB-ETU University, Medical Faculty Hospital using Philips Allura Centron interventional X-ray system.
View Article and Find Full Text PDFMetal halide perovskites are one of the most investigated materials in optoelectronics, with their lead-based counterparts being renowned for their enhanced optoelectronic performance. The 3D CsPbX structure has set the standard with many studies currently attempting to substitute lead with other metals while retaining the properties of this material. This effort has led to the fabrication of metal halides with lower dimensionality, wherein particular 2D layered perovskite structures have captured attention as inspiration for the next generation of colloidal semiconductors.
View Article and Find Full Text PDFBackground: The heating of chelating agents such as EDTA increases dentin wettability by decreasing surface tension. However, the calcium ion release effect of preheated chelating agents in instrumented root canals has not yet been mentioned. In this study, it was aimed to evaluate the number of calcium ions removed by the pre-heated chelating agents from the root canals.
View Article and Find Full Text PDFSilicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Förster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al O ) in between them (varied from 1 to 50 nm in thickness).
View Article and Find Full Text PDFNeuroblastoma, a neoplasm of the sympathetic nervous system, is the second most common extracranial malignant tumor of childhood and the most common solid tumor of infancy. Paclitaxel (taxol), a diterpenoid pseudoalkaloid isolated from the shells of Taxus brevifolia, is the first taxane derivative used in the clinic for cancer treatment. Poly (lactic-co-glycolic acid) (PLGA) is one of the most successfully used biodegradable polymers for drug delivery which has a minimum systemic toxicity.
View Article and Find Full Text PDFHere, the first account of self-resonant fully colloidal μ-lasers made from colloidal quantum well (CQW) solution is reported. A deep patterning technique is developed to fabricate well-defined high aspect-ratio on-chip CQW resonators made of grating waveguides and in-plane reflectors. The fabricated waveguide-coupled laser, enabling tight optical confinement, assures in-plane lasing.
View Article and Find Full Text PDFWe describe a study of the magneto-optical properties of Ag-doped CdSe colloidal nanoplatelets (NPLs) that were grown using a novel doping technique. In this work, we used magnetic circularly polarized luminescence and magnetic circular dichroism spectroscopy to study light-induced magnetism for the first time in 2D solution-processed structures doped with nominally nonmagnetic Ag impurities. The excitonic circular polarization () and the exciton Zeeman splitting () were recorded as a function of the magnetic field () and temperature ().
View Article and Find Full Text PDFWe demonstrate amplified spontaneous emission (ASE) in solution with ultralow thresholds of 30 μJ/cm in red and of 44 μJ/cm in green from engineered colloidal quantum well (CQW) heterostructures. For this purpose, CdSe/CdS core/crown CQWs, designed to hit the green region, and CdSe/CdS@CdZnS core/crown@gradient-alloyed shell CQWs, further tuned to reach the red region by shell alloying, were employed to achieve high-performance ASE in the visible range. The net modal gain of these CQWs reaches 530 cm for the green and 201 cm for the red, 2-3 orders of magnitude larger than those of colloidal quantum dots (QDs) in solution.
View Article and Find Full Text PDFThe realization of high-quality lasers in microfluidic devices is crucial for numerous applications, including biological and chemical sensors and flow cytometry, and the development of advanced lab-on-chip (LOC) devices. Herein, an ultralow-threshold microfluidic single-mode laser is proposed and demonstrated using an on-chip cavity. CdSe/CdS@Cd Zn S core/crown@gradient-alloyed shell colloidal semiconductor quantum wells (CQWs) dispersed in toluene are employed in the cavity created inside a poly(dimethylsiloxane) (PDMS) microfluidic device using SiO -protected Ag mirrors to achieve in-solution lasing.
View Article and Find Full Text PDFThis study demonstrates an ultra-thin colloidal gain medium consisting of bi-layers of colloidal quantum wells (CQWs) with a total film thickness of 14 nm integrated with high-index dielectrics. To achieve optical gain from such an ultra-thin nanocrystal film, hybrid waveguide structures partly composed of self-assembled layers of CQWs and partly high-index dielectric material are developed and shown: in asymmetric waveguide architecture employing one thin film of dielectric underneath CQWs and in the case of quasi-symmetric waveguide with a pair of dielectric films sandwiching CQWs. Numerical modeling indicates that the modal confinement factor of ultra-thin CQW films is enhanced in the presence of the adjacent dielectric layers significantly.
View Article and Find Full Text PDFBackground: High viscosity glass ionomer cement (HVGIC) and resin-modified glass ionomer cement (RMGIC) have recently been clinically preferred thanks to their numerous advantages. However, initial moisture contamination has a negative effect on the mechanical and physical properties of these cements. The aim of this study was of HVGICs and RMGICs, with and without surface protection, on water sorption, solubility and release of aluminum.
View Article and Find Full Text PDFInt Clin Psychopharmacol
January 2021
An increasing number of studies have focussed on the neurobiology of schizophrenia (SCH), contributing to a better understanding of this disorder. Prolidase is a metalloprotease found in various tissues, which has been associated with the concentrations of proline, a neurotransmitter, in the brain. There is evidence to suggest that elevated proline levels play a role in SCH.
View Article and Find Full Text PDFTo evaluate methods for analysis of genotoxic effects on mammalian cell lines, we tested the effect of three common genotoxic agents on Chinese hamster ovary (CHO) cells by single-cell gel electrophoresis (comet assay) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Suspension-grown CHO cells were separately incubated with etoposide, bleomycin, and ethyl methanesulfonate and analyzed by an alkaline comet assay and GC-MS/MS. Although DNA strand breaks were detected by the comet assay after treatment with all three agents, GC-MS/MS could only detect DNA nucleobase lesions oxidatively induced by bleomycin.
View Article and Find Full Text PDFWe propose and demonstrate construction of highly uniform, multilayered superstructures of CdSe/CdZnS core/shell colloidal nanoplatelets (NPLs) using liquid interface self-assembly. These NPLs are sequentially deposited onto a solid substrate into slabs having monolayer-precise thickness across tens of cm areas. Because of near-unity surface coverage and excellent uniformity, amplified spontaneous emission (ASE) is observed from an uncharacteristically thin film having 6 NPL layers, corresponding to a mere 42 nm thickness.
View Article and Find Full Text PDF